
CS 839 Probability and Learning in High Dimension Lecture 25 - 05/02/2022

Lecture 25: Randomized Numerical Linear Algebra II
Lecturer: Yudong Chen Scribe: Zhanpeng Zeng

In the last lecture, we discussed about the application of randomized numerical linear algebra (RandNLA)
on approximate matrix multiplication and introduced the problem on least squares (LS) approximation. In
this lecture, we continue on discussion on LS problem approximation.12

1 Least squares problem

Given A ∈ Rn×d (n� d) and b ∈ Rn, we would like to find the solution xls to

minimizex∈Rd ‖Ax− b‖2. (1)

Geometrically as shown in Figure 1, this problem is equivalent to projecting b to range(A) (i.e., the column
space of A), so the residual is orthogonal to the column space of A:

(Axls − b)⊥ range(A). (2)

Later, we will see that if we want to approximately compute the least square solution, we want this geometric
property to be approximately satisfied.

Figure 1: Geometric view of LS solution. Source: Lecture Note 24

Algebraically, the least squares solution xls satisfies the normal equation A>Axls = A>b. If A has full
column rank, then

xls = (A>A)−1A>b = VAΣ−1
A U>A︸ ︷︷ ︸

=:A†

b, (3)

where A = UAΣAV
>
A is the SVD of A and A† is called the pseudo inverse of A (as A†A = Id).

1Reading: Mahoney (2016)
2We thank Yuxin Chen for allowing us to draw from his slides for ELE 520: Mathematics of Data Science, Princeton

University, Fall 2020.

1



1.1 Methods

In practice, the closed form solution (A>A)−1A>b is rarely used directly to compute xls. Instead, LS
problems are typically solved via one of the following methods:

1. Direct methods: these are variants of Gaussian elimination applied to the normal equation, which
has computational complexity O(nd2).

(a) Cholesky decomposition: compute upper triangular matrix R s.t. A>A = R>R, and solve
R>Rx = A>b

(b) QR decomposition: compute QR decomposition A = QR (Q: orthonormal; R: upper triangular),
and solve Rx = Q>b

Direct methods yield high accuracy solutions. These methods are often used on dense A

2. Iterative methods: These are Conjugate Gradient and variants applied to the optimization problem

and have computational complexity (roughly) O
(
nd · σmax(A)

σmin(A) log 1
ε

)
. They are often used on large

sparse problems. The complexity depends on the condition number of A, so they may be slow on
ill-conditioned problems.

3. Randomized methods: which is our focus. The general goal is to achieve a sample complexity in
the form of Õ

(
nd/ε

)
. In this case, randomized methods are linear in d, whereas direct methods scale

with d2, and they are fast on ill-conditioned problem compared to iterative methods.

2 Randomized least squares approximation

The basic idea is to generate a sketching / sampling matrix Φ ∈ Rr×n (with r � n, e.g., via random
sampling, random projection), and solve instead the smaller, subsampled LS problem

x̃ls = arg min
x∈Rd

‖Φ(Ax− b)‖2, (4)

where the problem size is reduced from n×d to r×d. Then, if the problem (4) is solved with direct methods,
the time complexity is O(rd2)� O(nd2).

Our goal is to find Φ such that x̃ls is a good approximation to xls in terms of both the estimation and
fitting error, i.e.,

x̃ls ≈ xls

‖Ax̃ls − b‖2 ≈ ‖Axls − b‖2
In the following, we will first state two deterministic conditions on Φ that promise reasonably good

approximations (Drineas et al., 2011). Later, we will find examples of Φ that satisfy these conditions with
high probability.

2.1 Deterministic conditions on Φ

Let A = UAΣAV
>
A be the SVD of A.

1. Condition 1 (approximate isometry)

σ2
min(ΦUA) ≥ 1√

2
. (5)

The 1√
2

can be replaced by other positive constants. Note that σ2
min(UA) = 1. The condition (5) says

that σ2
min(ΦUA) is still bounded away from 0. Also note that UA is an isometry / rotation in the sense

that
‖UAv‖22 = v>U>AUAv = v>v = ‖v‖22

2

https://www.mathworks.com/help/matlab/math/iterative-methods-for-linear-systems.html


The condition (5) says that ΦUA is an approximate isometry / rotation in the sense that

‖ΦUAv‖22 ≥
1√
2
‖v‖22

One example of Φ is a subsampling matrix that picks out a subset of the rows of A. The condition (5)
says after subsampling A, the smallest singular value is approximately preserved.

2. Condition 2 (approximate orthogonality)∥∥∥U>AΦ>Φ(Axls − b)
∥∥∥2

2
≤ ε

2
‖Axls − b‖22 (6)

Recall the geometric interpretation of least squares: the residual of the least-squares solution xls is
orthogonal to range(UA) = range(A):

U>A(Axls − b) = 0

The condition (6) says that “subsampled residual” Φ (Axls − b)︸ ︷︷ ︸
=(UAU>

A−I)b

is approximately orthogonal to the

“subsampled range” ΦUA. In other words, we want to Φ to preserve the angle between the residual
vector and the columns of A. Even though this condition depends on b, one can find Φ satisfying this
condition without using any information about b, as we show later.

2.1.1 Examples

We provide two extreme examples that satisfy the two conditions above.

1. Φ = I, which satisfies {
σmin (ΦUA) = σmin (UA) = 1∥∥U>AΦ>Φ (Axls − b)

∥∥
2

=
∥∥U>A (I −UAU

>
A

)
b
∥∥

2
= 0

This Φ is easy to construct, but does not actually reduce the computational complexity of the original
LS problem.

2. Φ = U>A , which satisfies{
σmin (ΦUA) = σmin (I) = 1∥∥U>AΦ>Φ (Axls − b)

∥∥
2

=
∥∥U>A (I −UAU

>
A

)
b
∥∥

2
= 0

This Φ is hard to construct: computing UA is at least as hard as solving the original problem. But
using this Φ leads to a subsampled LS problem that is easy to solve.

Later we will discuss better choices of Φ that satisfy the two conditions, are easy to construct, and lead
to a easily solvable subsampled LS problem.

2.2 Quality of approximation

When these two conditions are satisfied, the following lemma provide guarantee on the quality of approxi-
mation w.r.t. both fitting error and estimation error.

Lemma 1. Under Conditions 1-2, the solution x̃ls to the subsampled LS problem (4) obeys

(i) (Fitting error) ‖Ax̃ls − b‖2 ≤ (1 + ε)‖Axls − b‖2,

3



(ii) (Estimation error) ‖x̃ls − xls‖2 ≤
√
ε

σmin(A)‖Axls − b‖2.

Proof

(i) By a change of variable, the subsampled LS problem (4) can be rewritten as

min
x∈Rd

‖Φb−ΦAx‖22 = min
∆∈Rd

∥∥Φb−ΦA
(
xls + ∆

)∥∥2

2

= min
∆∈Rd

∥∥Φ(b−Axls

)
−ΦA∆

∥∥2

2

= min
∆∈Rd

∥∥∥Φ(b−Axls

)
−ΦUAΣAVA∆︸ ︷︷ ︸

=:z

∥∥∥2

2

= min
z∈Rd

∥∥∥Φ(b−Axls

)
−Φ UAz︸︷︷︸

=A(x−xls)

∥∥∥2

2
,

where ∆ := x − xls. The minimization problem in the last line above is an LS problem over z. The
optimal solution zls is given by

zls =
(
U>AΦ>ΦUA

)−1(
U>AΦ>

)
Φ
(
b−Axls

)
.

Recall that Condition 1 ensures that

σmin

(
U>AΦ>ΦUA

)
= σ2

min

(
ΦUA

)
≥ 1

2
,

and Condition 2 ensures that ∥∥∥U>AΦ>Φ(b−Axls)
∥∥∥2

2
≤ ε

2
‖b−Axls‖22.

Combining the last three equations gives

‖zls‖22 ≤
∥∥∥(U>AΦ>ΦUA

)−1
∥∥∥2 ∥∥U>AΦ>Φ

(
b−Axls

)∥∥2

2
≤ 2ε‖b−Axls‖22

Previous bounds further yield∥∥b−Ax̃ls

∥∥2

2
=
∥∥∥b−Axls︸ ︷︷ ︸
⊥UA

+ Axls −Ax̃ls︸ ︷︷ ︸
∈ range(UA)

∥∥∥2

2

=
∥∥b−Axls

∥∥2

2
+
∥∥Axls −Ax̃ls

∥∥2

2

=
∥∥b−Axls

∥∥2

2
+
∥∥UAzls

∥∥2

2

=
∥∥b−Axls

∥∥2

2
+
∥∥zls∥∥2

2

≤ (1 + 2ε)
∥∥b−Axls

∥∥2

2

≤ (1 + ε)
2 ∥∥b−Axls

∥∥2

2
.

This completes the proof of part (i) in the lemma.

4



(ii) From the proof of (i), we know Axls −Ax̃ls = UAzls and ‖zls‖22 ≤ ε‖b−Axls‖22. It follows that

‖xls − x̃ls‖22 ≤
‖A(xls − x̃ls)‖22

σ2
min(A)

=
‖UAzls‖22
σ2

min(A)

=
‖zls‖22
σ2

min(A)

≤
ε
∥∥b−Axls

∥∥2

2

σ2
min(A)

as claimed.

By imposing further assumptions on b, we can connect the estimation error bound with ‖xls‖2

Lemma 2. Suppose ‖UAU
>
A b‖2 ≥ γ‖b‖2 for some 0 < γ ≤ 1. Under Conditions 1-2, the solution x̃ls to the

subsampled LS problem (4) obeys

‖xls − x̃ls‖2 ≤
√
ε κ(A)

√
γ−2 − 1‖xls‖2,

where κ(A) := condition number of A.

The condition ‖UAU
>
A b‖2 ≥ γ‖b‖2 says that the quantity UAU

>
A b, which is the projection of b onto the

column space of A, is large. In other words, a nontrivial fraction of the energy of b lies in range(A).

Proof
Since b−Axls = (I −UAU

>
A )b, one has

‖b−Axls‖22 = ‖(I −UAU
>
A )b‖22

= ‖b‖22 − ‖UAU
>
A b‖22

≤
(
γ−2 − 1

)
‖UAU

>
A b‖22 (since ‖UAU

>
A b‖2 ≥ γ‖b‖2)

=
(
γ−2 − 1

)
‖Axls‖22 (since Axls = UAU

>
A b)

≤
(
γ−2 − 1

)
σ2

max(A) ‖xls‖22.

This combined with Lemma 1(ii) concludes the proof.

3 Randomized algorithms for least squares

Summarizing the last section, we have two deterministic conditions. If Φ satisfies these two conditions, we
are guaranteed to have a good solution both in terms of fitting error and estimation error.

Condition 1 can be guaranteed if∥∥∥U>A (Φ>Φ
)
UA −U>AUA︸ ︷︷ ︸

=I

∥∥∥ ≤ 1− 1√
2
. (7)

This condition says that we want to approximate the matrix product U>AUA by constructing a good Φ.

5



Condition 2 can be guaranteed if∥∥∥U>A (Φ>Φ
)(
Axls − b

)
− U>A

(
Axls − b

)︸ ︷︷ ︸
=U>

A (I−UAU>
A )b=0

∥∥∥2

2
≤ ε

2
‖UA‖2︸ ︷︷ ︸

=1

‖Axls − b‖22. (8)

This condition again says that we want to approximate the product of two matrices, U>A and
(
Axls− b

)
, by

constructing a good Φ.
Both conditions can be viewed as approximate matrix multiplication via designing Φ>Φ. The key differ-

ence compared to approximate matrix multiplication is that the matrices UA and Axls − b are not directly
given to us.

One data-agnostic choice of Φ is Gaussian sampling. In particular, let Φ ∈ Rr×n be composed of
i.i.d. Gaussian entries N

(
0, 1

r

)
. The expectation of Φ>Φ is proportional to the identity matrix. It is then

easy to verify that Conditions 1-2 are satisfied with high prob. if r & d log d
ε (exercise). The problem is that

implementing Gaussian sampling is expensive: computing ΦA takes time Ω(nrd) = Ω(nd2 log d), which is
the same as using direct methods to solve the original LS problem.

Can we construct a better Φ? Let us begin with Condition 1 and try the subsampled matrix multiplication
approximation with the optimal sampling probabilities. That is, we try to choose a subsampling matrix Φ
such that

U>AUA ≈ U>AΦ>ΦUA.

From our last lecture on approximate matrix multiplication, we know that if the subsampling probability
is proportional to the norm of each row of UA, then the approximation is good. These row norms play an
important role in least squares problems and beyond, so we give them a name.

Definition 1. The leverage scores of A are defined to be ‖(UA)k,:‖2 (1 ≤ k ≤ n)

The above discussion suggests that one could perform nonuniform random subsampling using the
leverage score of A. In particular, one could set Φ ∈ Rr×n to be a (weighted) random subsampling matrix
such that

P
(

Φi,: =
1
√
rpk

e>k

)
= pk, 1 ≤ k ≤ n

with pk ∝ ‖(UA)k,:‖22. This method, however, is still slow: it needs to compute (exactly) leverage scores,
which takes Ω(nd2) time, same as direct methods.

Can we design a sketching matrix Φ that allows fast computation while satisfying Conditions 1-2? Below
we discuss two approaches. The first approach constructs a data-agnostic Φ (i.e., independent of A, b)
using Subsampled Randomized Hadamard Transform. The second approach is data-dependent and relies on
approximate estimation of the leverage scores.

3.1 Subsampled Randomized Hadamard Transform (SRHT)

An SRHT matrix Φ ∈ Rr×n is given by
Φ = RHD, (9)

where the three matrices R, H and D are given as follows.

• D ∈ Rn×n is a diagonal matrix, whose entries are random {±1};

• H ∈ Rn×n is a Hadamard matrix (scaled by 1/
√
n so it’s orthonormal). A Hadamard matrix is a square

matrix with ±1 entries and orthogonal columns. Hadamard matrices can be constructed recursively
by

H2 =

[
1 1
1 −1

]
H2d =

[
Hd Hd

Hd −Hd

]
, d = 2, 3, . . .

6



• R ∈ Rr×n is uniform random subsampling matrix, where

P
(
Ri,: =

√
n

r
e>k

)
=

1

n
, 1 ≤ k ≤ n. (10)

It is easy to verify that E
[
Φ>Φ

]
= In.

The idea of SRHT is using HD to “uniformize” the leverage scores of A, so that {‖(HDUA)i,:‖2}
are more-or-less identical across i. Then we can subsample rank-one components uniformly at random, since
the optimal sampling probability is proportional to the now-uniformized leverage scores. By using SRHT,
we can avoid computing the leverage scores of UA.

Moreover, computing the product ΦA = (RHD)A takes time Ω̃(nd), since the matrix-vector product
Hu can be computed in “FFT time” Ω(n log n) thanks to the structure of the Hadamard matrix H.

The lemma below rigorously proves that HD indeed approximately uniformizes the leverage scores.

Lemma 3. For any fixed matrix U ∈ Rn×d, one has

max
1≤i≤n

‖(HDU)i,:‖2 .
log n√
n
‖U‖F

with probability exceeding 1−O(n−9)

In other words, the lemma says that with high probability HD preconditions U , in the sense that

‖(HDU)i,:‖22∑n
l=1 ‖(HDU)l,:‖22

=
‖(HDU)i,:‖22
‖U‖2F

.
log2 n

n

Proof
For any fixed matrix U ∈ Rn×d, one has

(HDU)i,: =

n∑
j=1

hi,jDj,j︸ ︷︷ ︸
random on {± 1√

n
}

Uj,: .

It is clear that E [(HDU)i,:] = 0. In addition, we have

V := E

 n∑
j=1

‖hi,jDj,jUj,:‖22

 =
1

n

n∑
j=1

‖Uj,:‖22 =
1

n
‖U‖2F

B := max
j
‖hi,jDj,jUj,:‖2 =

1√
n

max
j
‖Uj,:‖2 ≤

1√
n
‖U‖F

Invoking the matrix Bernstein in equality, we obtain that with prob. 1−O(n−10),

‖(HDU)i,:‖2 .
√
V log n+B log n .

log n√
n
‖U‖F.

When uniform subsampling is adopted, one has pk = 1/n. In view of Lemma 3, we have

pk ≥ β
‖(HDUA)i,:‖22∑n
l=1 ‖(HDUA)l,:‖22

(11)

7



with β � log−2 n. Then, applying Theorem 3 from last lecture (spectral norm error bound for approximate
matrix multiplication), we get∥∥U>AΦ>ΦUA − I

∥∥ =
∥∥U>AΦ>ΦUA −U>AUA

∥∥
=
∥∥(U>AD>H>

)
R>R (HDUA)−

(
U>AD>H>

)
(HDUA)

∥∥
≤ 1/2

provided that r & ‖HDUA‖2F
‖HDUA‖2

logn
β � d log3 n. This shows that Φ, which is given by SRHT, satisfies Condi-

tion 1.
Similarly, Condition 2 is satisfied with high probability provided that r & d log3 n

ε (exercise).
Putting all together, we have the following randomized algorithm for approximate least squares.

Algorithm 1 Randomized LS approximation (uniform sampling)

1: Pick r & d log3 n
ε , and generate R ∈ Rr×n, H ∈ Rn×n and D ∈ Rn×n (as described before)

2: return x̃ = (RHDA)†RHDb

The computational complexity of the above algorithm is roughly

O

(
nd log

n

ε︸ ︷︷ ︸
compute HDA

+
d3 log3 n

ε︸ ︷︷ ︸
solve subsampled LS (rd2)

)
. (12)

When n is large, the first term is the dominant term. This archives our goal: linear in d and independent of
the condition number.

3.2 Nonuniform sampling

The key idea of Algorithm 1 is to uniformize leverage scores followed by uniform sampling. There is an
alternative approach, via nonuniform sampling. In particular, one can start by estimating leverage scores,
and then apply nonuniform sampling accordingly.

The key idea is still applying SRHT (or other fast Johnson-Lindenstrass transform, e.g., Ailon and
Chazelle 2009) but in several appropriate places. Observe that leverage scores can be approximated as

‖Ui,:‖22 = ‖e>i U‖22 = ‖e>i UU>‖22
= ‖e>i AA†‖22
≈ ‖e>i AA†Φ>1 ‖22,

where Φ1 ∈ Rr1×n is SRHT matrix. But, the issue is that AA† is expensive to compute. Can we compute
AA†Φ>1 in a fast manner?

Let Φ ∈ Rr×n be an SRHT matrix with sufficiently large r � dpoly logn
ε2 . With high probability, one has

(Mahoney, 2016) ∥∥(ΦUA)† − (ΦUA)>
∥∥ ≤ ε and (ΦA)† = VAΣ−1

A (ΦUA)†.

This means that

A(ΦA)† = UAΣAV
>
A VAΣ−1

A (ΦUA)† ≈ UAΣAV
>
A VAΣ−1

A (ΦUA)>

= UAU
>
AΦ> = AA†Φ.

Putting all together, we have the following approximation of the leverage scores:

‖Ui,:‖22 ≈ ‖e>i A(Φ1A)†‖22
≈ ‖e>i A(Φ1A)†Φ2‖22,

8



where Φ1 ∈ Rr1×n and Φ2 ∈ Rr1×r2 (r2 � poly log n) are both SRHT matrices. Note that the pseudo inverse
in the last line above is easy to compute, since Φ1A is a much smaller matrix than A.

In Algorithm 2 we summarize the above procedure for approximating the leverage scores.

Algorithm 2 Leverage scores approximation

1: Pick r1 & d log3 n
ε and r2 � poly log n

2: Compute Φ1A ∈ Rr1×d and its QR decomposition, and let RΦ1A be the “R” matrix from QR
3: Construct Ψ = AR−1

Φ1A
Φ2

4: return `i = ‖Ψi,:‖2

Once the leverage scores of A are approximated, we can do nonuniform sampling with probability pk
proportional to the approximated leverage scores. This would allow us to satisfy Condition 1.

However, recall that we also need to approximate the product of UA and Axls−b so as to satisfy Condition
2. The optimal sampling probability requires leverage scores for both matrices. We only have information
for UA but no information for the residual Axls − b (computing the residual is the same as solving the
original LS problem). Fortunately, we can make use of the results for the one sided information setting of
approximate matrix multiplication (Section 2.6 from last lecture). In particular, if we choose probability
only with information from one matrix, UA, we can still have guarantee on the approximation error, albeit
with a worst probability .

Putting all together, we have following randomized LS algorithm, which first estimates the leverage scores
using Algorithm 2 and then perform nonuniform sampling.

Algorithm 3 Randomized LS approximation (nonuniform sampling)

1: Run Algorithm 2 to compute approximate leverage scores {`k}, and set pk ∝ `2k
2: Randomly sample r & dpoly logn

ε rows of A and elements of b using {pk} as sampling probabilities, rescal-
ing each by 1/

√
rpk. Let ΦA and Φb be the subsampled matrix and vector

3: return x̃ls = arg minx∈Rd ‖ΦAx−Φb‖2

The computational complexity is roughly O
(
nd polylogn

ε2 + d3polylogn
ε2

)
. Informally, Algorithm 3 returns a

reasonably good solution with probability 1−O(1/ log n).

References

Ailon, N. and Chazelle, B. (2009). The fast johnson–lindenstrauss transform and approximate nearest
neighbors. SIAM Journal on Computing, 39(1):302–322.

Drineas, P., Mahoney, M., Muthukrishnan, S., and Sarlos, T. (2011). Faster least squares approximation.
Numerische Mathematik.

Mahoney, M. W. (2016). Lecture notes on randomized linear algebra.

9


	Lecture 25 – Lecture 25: Randomized Numerical Linear Algebra II
	Least squares problem
	Methods

	Randomized least squares approximation
	Deterministic conditions on 
	Examples

	Quality of approximation

	Randomized algorithms for least squares
	Subsampled Randomized Hadamard Transform (SRHT)
	Nonuniform sampling



