
CS 839 Probability and Learning in High Dimension Lecture 26 - 05/04/2022

Lecture 26: Randomized Numerical Linear Algebra III
Lecturer: Yudong Chen Scribe: Matthew Zurek

In this lecture,12 we will discuss randomized algorithms for low-rank matrix approximation. Making use
of results for approximate matrix multiplication and least squares from the previous two lectures, we give
several algorithms and analyze their differing error guarantees.

1 Recap

In the previous two lectures, we discussed randomized algorithms for matrix multiplication and least squares
problems which beat the runtimes of the standard approaches for these problems, at the cost of having worse
accuracy. First we review the high-level strategies of these algorithms.

• Matrix multiplication

– We randomly subsample columns of A and rows of B, and use the outer products A:,iBi,: to
approximate AB.

– Ideally we should sample each row/column pair A:,i,Bi,: with probability proportional to the
product of their norms, ∥A:,i∥2 ∥Bi,:∥2.

• Least squares problems

– Given the least squares problem minimizex∈Rd ∥Ax− b∥22 withA ∈ Rn×d and n ≫ d, we construct

Φ ∈ Rr×n to reduce the dimensionality ofA and solve the smaller problem of minimizex∈Rd ∥Φ(Ax− b)∥22.
– We covered two approaches to choosing Φ which are based on the uniform and non-uniform

subsampling strategies, respectively.

1. Subsampled randomized Hadamard transform (SRHT): First transform A to make the lever-
age scores approximately uniform, and then we can subsample the rows uniformly at random.

2. We estimate the leverage scores of A and sample each row with probability proportional to
its leverage score. Naively trying to compute the leverage scores exactly would take SVD
time Ω(nd2), but we can still make this idea work by approximating the leverage scores in a
way which made essential use of the SRHT. Ultimately ≳ (d polylogn)/ε rows are needed for
an ε-approximate answer. If A is low-rank then a more careful analysis than what we saw in
class allows us to replace d with rank(A).

2 Low-Rank Matrix Approximation

Given a matrix A ∈ Rn×n, our goal is to compute a rank-k matrix which is a good approximation to A.
First we review the baseline approach.

• One can compute the SVD of A = UΣV ⊤ and then truncate all singular values besides the top k.
The matrix we return is

Ak := UkU
⊤
k A

where Uk consists of top k singular vectors (note UkU
⊤
k projects onto the subspace spanned by the

top k singular vectors).

1Reading: [Mahoney, 2016]
2We thank Yuxin Chen for allowing us to draw from his slides for ELE 520: Mathematics of Data Science, Princeton

University, Fall 2020.

1



• This has optimal error with respect to the Frobenius norm: ∥Ak −A∥F = minZ:rank(Z)≤k ∥Z −A∥F.
Ak is also optimal with respect to the spectral norm.

• In general this takes time O(n3) (by direct methods) or O(n2k) (by power methods). Analogous to least
squares problems, direct methods have very high accuracy, while power methods only rely on matrix
vector multiplications (and thus can be especially fast for sparse A) but suffer from dependencies on
the spectrum of A. Power methods also often depend like O(log(1/ε)) on the accuracy ε.

Our goal is to find a faster randomized algorithm with a time complexity of O(n2 log k) and a worse accuracy
dependence like 1/ε.

2.1 Basic Algorithmic Strategy

Instead of directly taking the SVD of A, we first subsample it. In our subsampling procedure, we sample r
columns of A into C ∈ Rn×r, and then return

CC†A.

Note this is the projection of A onto the column space of C. It can be computed quickly (relative to
taking the SVD of A) because C is n× r (r < n) and thus

• the SVD/pseudoinverse of C can be computed in O(nr2) time

• the product C︸︷︷︸
n×r

C†A︸ ︷︷ ︸
r×n

can be computed in O(n2r) time.

While CC†A is an approximation of A, it is not (necessarily) rank k. Therefore instead of projecting
onto the column space of C, we project onto the subspace spanned by the top k left singular vectors of C.
This gives our first generic randomized low-rank approximation algorithm.

Algorithm 1: Generic low-rank approximation algorithm

1: input: data matrix A ∈ Rn×n, subsampled matrix C ∈ Rn×r

2: Compute top k left singular vectors Hk of C
3: return HkH

⊤
k A

Notice that CC†A has the form CX and thus can be interpreted as using linear combinations of a few
columns of A to approximate each column of A. On the other hand, HkH

⊤
k A is actually rank k but is less

interpretable. Nonetheless, the approximation error of HkH
⊤
k A will still depend on C, specifically on the

norm of AA⊤ −CC⊤ as we will soon see.
From here, our approach to developing the generic algorithm into a concrete approach resembles our

steps from the least squares problem:

1. First we find a deterministic condition on C which guarantees good approximation.

2. Then we construct C to satisfy this condition.

2.2 Analysis

2.2.1 Frobenius Approximation Error

To find desirable conditions for C, first we consider the Frobenius norm approximation error.

2



Lemma 1. The output of Algorithm 1 satisfies∥∥A−HkH
⊤
k A

∥∥2
F
≤

∥∥A−UkU
⊤
k A

∥∥2
F︸ ︷︷ ︸

best rank-k approx. error

+2
√
k
∥∥AA⊤ −CC⊤∥∥

F︸ ︷︷ ︸
excess error

where Uk ∈ Rn×k contains top-k left singular vectors of A.

For the high-level idea behind the proof, imagine that we could apply the triangle inequality to write∥∥A−HkH
⊤
k A

∥∥
F
≤

∥∥A−UkU
⊤
k A

∥∥
F
+

∥∥UkU
⊤
k A−HkH

⊤
k C

∥∥
F
+

∥∥HkH
⊤
k C −HkH

⊤
k A

∥∥
F
.

The third term is
∥∥HkH

⊤
k (A−C)

∥∥
F
(where HkH

⊤
k is a projection onto a rank k subspace), and the second

term could hopefully be put into a similar form after applying a singular vector perturbation theorem to
relate Uk to Hk. Of course this is not a correct proof, as C and A do not have the same dimensions. Now
we provide a proof.
Proof of Lemma 1 To begin with, since Hk is orthonormal, one has∥∥A−HkH

⊤
k A

∥∥2
F
=

∥∥A∥∥2
F
−
∥∥H⊤

k A
∥∥2
F
.

Next, letting hi = (Hk):,i yields∣∣∣∣∣∥∥H⊤
k A

∥∥2
F
−

k∑
i=1

σ2
i (C)

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

∥∥A⊤hi

∥∥2
2
−

k∑
i=1

∥Chi∥22

∣∣∣∣∣
=

∣∣∣∣∣
k∑

i=1

〈
hih

⊤
i ,AA⊤ −CC⊤〉∣∣∣∣∣

=
∣∣〈HkH

⊤
k ,AA⊤ −CC⊤〉∣∣

≤
∥∥HkH

⊤
k

∥∥
F

∥∥AA⊤ −CC⊤∥∥
F

≤
√
k
∥∥AA⊤ −CC⊤∥∥

F
.

In addition,∣∣∣∣∣
k∑

i=1

σ2
i (C)−

k∑
i=1

σ2
i (A)

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

{
σi(CC⊤)− σi(AA⊤)

}∣∣∣∣∣
≤

√
k

√√√√ n∑
i=1

{σi(CC⊤)− σi(AA⊤)}2 (Cauchy-Schwarz)

≤
√
k
∥∥CC⊤ −AA⊤∥∥

F
(Wielandt-Hoffman inequality).

Finally, one has ∥A−UkU
⊤
k A∥2F = ∥A∥2F−

∑k
i=1 σ

2
i (A). Combining these results establishes the claim.

2.2.2 Spectral Approximation Error

A similar bound holds for approximation error in the spectral norm.

Lemma 2. The output of Algorithm 1 satisfies∥∥A−HkH
⊤
k A

∥∥2 ≤
∥∥A−UkU

⊤
k A

∥∥2 + 2
∥∥AA⊤ −CC⊤∥∥

where Uk ∈ Rn×k contains the top k left singular vectors of A.

3



Proof of Lemma 2 First of all,∥∥A−HkH
⊤
k A

∥∥ = max
x:∥x∥2=1

∥∥x⊤(I −HkH
⊤
k

)
A
∥∥
2

= max
x:∥x∥2=1,x⊥Hk

∥∥x⊤A
∥∥
2

Additionally, for any x ⊥ Hk,∥∥x⊤A
∥∥2
2
=

∣∣x⊤CC⊤x+ x⊤(AA⊤ −CC⊤)x
∣∣

≤
∣∣x⊤CC⊤x

∣∣+ ∣∣x⊤(AA⊤ −CC⊤)x
∣∣

≤ σk+1

(
CC⊤)+ ∥∥AA⊤ −CC⊤∥∥

≤ σk+1

(
AA⊤)+ 2

∥∥AA⊤ −CC⊤∥∥
= ∥A−UkU

⊤
k A∥2 + 2

∥∥AA⊤ −CC⊤∥∥.
This concludes the proof.

2.3 Algorithms

2.3.1 Non-Uniform Sampling Algorithm

Now we proceed to devise a concrete algorithm for finding C. As revealed by Lemmas 1 and 2, we need to
make AA⊤ −CC⊤ small. To approximate the product AA⊤, we can use the procedures we developed for
matrix multiplication! Concretely, one approach is to use the randomized matrix multiplication algorithm
based on non-uniform sampling (proportional to ∥A:,k∥22):

Algorithm 2: One-pass randomized SVD

1: Set pk ≥ β∥A:,k∥2
2

∥A∥2
F

, 1 ≤ k ≤ n

2: for l = 1, · · · , r do
3: Pick il ∈ {1, · · · , n} i.i.d. with prob. P{il = k} = pk
4: Set C:,l =

1√
rpil

A:,l

5: return Hk as top-k left singular vectors of C

As stated, Algorithm 2 returns Hk, which are approximate top k left singular vectors. We could repeat
to also produce right singular vectors, and hence the above procedure can be viewed as a randomized SVD
algorithm. Of course we can also use Hk to construct the low-rank approximation HkH

⊤
k A.

Invoking our theorems from Lecture 24 on the Frobenius and spectral error of non-uniform sampling for
matrix multiplication, we have that with high probability:

• If r ≳ k logn
βε2 , then ∥∥A−HkH

⊤
k A

∥∥2
F
≤ ∥A−UkU

⊤
k A∥2F + ε∥A∥2F. (1)

• If r ≳ ∥A∥2
F

∥A∥2
logn
βε2 , then ∥∥A−HkH

⊤
k A

∥∥2 ≤ ∥A−UkU
⊤
k A∥2 + ε∥A∥2. (2)

4



2.3.2 An Improved Multi-Pass Algorithm

If we make more passes over the matrix A, we can improve upon these error guarantees. Instead of stopping
after forming our first low-rank approximation Â to A, we can recursively apply Algorithm 2 to the residual
A− Â. This will cause the errors to decrease geometrically in the number t of recursive steps and will use
a total of rt sampled columns.

Algorithm 3: Multi-pass randomized SVD

1: S = {}
2: for l = 1, · · · , t do
3: El = A−ASA

†
SA

4: Set pk ≥ β∥(El):,k∥2
2

∥El∥2
F

, 1 ≤ k ≤ n

5: Randomly select r column indices with sampling prob. {pk} and append to S
6: return C = AS

Theorem 3. Suppose r ≳ k logn
βε2 . With high probability,

∥A−CC†A∥2F ≤ 1

1− ε
∥A−UkU

⊤
k ∥2F + εt∥A∥2F.

First we provide a sketch of the proof.
Sketch of Proof After constructing C the first time we have A = CC†A + E, where E satisfies the
error guarantee

∥E∥2F ≤ ∥A−Ak∥2F + ε∥A∥2F.

After choosing the next set of columns to form C ′, we have that E = C ′(C ′)†E+E′, where E′ satisfies the
error guarantee

∥E′∥2F ≤ ∥E −Ek∥2F + ε∥E∥2F

and Ek is the best rank-k approximation to E. We can show that ∥E − Ek∥2F ≤ ∥A − Ak∥2F, and then
substituting into the above inequality yields

∥E′∥2F ≤ ∥A−Ak∥2F + ε
(
∥A−Ak∥2F + ε∥A∥2F

)
= (1 + ε)∥A−Ak∥2F + ε2∥A∥2F

...

≤ (1 + ε+ ε2 · · ·+ εt−1)∥A−Ak∥2F + εt∥A∥2F

where to get the final inequality we recursively repeat this procedure t total times.

Proof of Theorem 3: We will prove by induction. By (1), the theorem holds for t = 1.
Assume the theorem holds for t− 1:∥∥∥A−Ct−1(Ct−1)†A︸ ︷︷ ︸

:=Et

∥∥∥2
F
≤ 1

1− ε
∥A−UkU

⊤
k A∥2F + εt−1∥A∥2F,

and let Z be the matrix of the columns of Et included in the sample. In view of (1),∥∥∥Et −ZZ†Et

∥∥∥2
F
≤ ∥Et − (Et)k∥2F + ε∥Et∥2F,

5



where (Et)k is the best rank-k approximation of Et. Combining the above two inequalities yields∥∥∥Et −ZZ†Et

∥∥∥2
F
≤ ∥Et − (Et)k∥2F

+
ε

1− ε
∥A−UkU

⊤
k A∥2F + εt∥A∥2F. (3)

We claim (and will prove later) that

Et −ZZ†Et = A−Ct(Ct)†A (4)

and

∥Et − (Et)k∥2F ≤ ∥A−Ak∥2F . (5)

Substituting into (3) yields∥∥A−Ct(Ct)†A
∥∥2
F
≤ ∥A−Ak∥2F +

ε

1− ε
∥A−Ak∥2F + εt∥A−Ak∥2F

=
1

1− ε
∥A−Ak∥2F + εt∥A−Ak∥2F.

This proves the theorem for t. It remains to justify (4) and (5).
To prove (4), note that ZZ†Ct−1(Ct−1)† = 0. This gives

Ct(Ct)† = Ct−1(Ct−1)† +ZZ†

Hence

A−Ct(Ct)†A = A−Ct−1(Ct−1)†A−ZZ†A

= A−Ct−1(Ct−1)†A︸ ︷︷ ︸
:=Et

−ZZ† (A−Ct−1(Ct−1)†A
)︸ ︷︷ ︸

:=Et

= Et −ZZ†Et

To show (5), note that (Et)k is best rank-k approximation of Et. This gives

∥Et − (Et)k∥2F =
∥∥(I −Ct−1(Ct−1)†

)
A−

((
I −Ct−1(Ct−1)†

)
A
)
k

∥∥2
F

≤
∥∥(I −Ct−1(Ct−1)†

)
A−

(
I −Ct−1(Ct−1)†

)
Ak

∥∥2
F

since
(
I −Ct−1(Ct−1)†

)
Ak is rank-k

=
∥∥(I −Ct−1(Ct−1)†

)
(A−Ak)

∥∥2
F

≤ ∥A−Ak∥2F .

2.4 Types of Matrix Decomposition

Having given some low-rank matrix approximation algorithms, we quickly take a high-level view of approaches
to this problem.

6



• CX decomposition: let C ∈ Rn×r consist of r actual columns of A, and return

Â = CX

for some matrix X ∈ Rr×n. The multipass Algorithm 3 is an example of this type of decomposition.

• CUR decomposition: let C ∈ Rn×r consist of r actual columns of A, let R ∈ Rr×n consist of r
actual rows of A, and return

Â = CUR

for some matrix U ∈ Rr×r. This will not be covered in this course but appears in the provided
references.

2.5 An Example

The lecture audience asked what would go wrong if instead of using non-uniform sampling in Algorithm 2,
we simply deterministically returned the columns of A with the largest norms. We discussed a few reasons.

1. Randomization allows us to create an unbiased estimator of A. If we instead fixed a deterministic
strategy, then informally there will always exist inputs A on which we do badly.

2. Consider the following example:

A =


100 100 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1

 .

A deterministic strategy which takes the largest-norm columns will choose the first two columns but
miss (much of) the column space spanned by the remaining columns. This is undesireable because
each of the first two columns span the same space, and so using both is redundant. The non-uniform
sampling strategy, which samples columns proportionally to their squared norms, will also sample the
first two columns too heavily while neglecting the remaining columns. This was still good enough to
give us an additive error bound (the neglected columns have smaller norms), but as we will soon see,
different sampling probabilities can achieve a superior multiplicative error bound.

3 Multiplicative Error Guarantees for CX Decomposition

So far we have developed CX decomposition results of the form

∥A−CC†A∥2F ≤ ∥A−Ak∥2F + additive error

∥A−CC†A∥2 ≤ ∥A−Ak∥2 + additive error

via techniques from approximate matrix multiplication. A stronger guarantee would be multiplicative, such
as

∥A−CC†A∥F ≤ (1 + ε)∥A−Ak∥F.

To see why this might be desirable, consider the case that A is actually exactly low rank. A multiplicative
guarantee would then give zero error (since ∥A − Ak∥F = 0) whereas an additive guarantee would not.
To achieve multiplicative error guarantees, we will use techniques from least squares instead of matrix
multiplication.

7



3.1 Generalized Least Squares Problems

Generalized least squares problems have the form

minimizeX ∥B −AX∥2F

where X is a matrix rather than a vector. The optimal solution to this problem generalizes the original least
squares solution: X ls = A†B. This is just several independent least squares problems, one for each column
of X and B. We can therefore still apply our randomized least squares techniques. We give a quick outline
of how this works:

1. With r ≳ rank(A)·log(rank(A))
ϵ2 , construct a optimally weighted subsampling matrix Φ ∈ Rr×n (by

approximating the leverage scores of A).

2. Compute

X̃ ls = (ΦA)†ΦB.

Then informally, with high probability, we have

∥B −AX̃ ls∥F ≤ (1 + ϵ)
{
min
X

∥B −AX∥F
}

(6)

∥X ls − X̃ ls∥F ≤ ϵ

σmin(Ak)

{
min
X

∥B −AX∥F
}
. (7)

3.2 Another Algorithm for CX Decomposition

Now we give our algorithm for CX decomposition which achieves a multiplicative error.

Algorithm 4: Randomized algorithm for CX decomposition

1: Compute sampling probabilities {pi}ni=1, where pi =
1
k∥(UA⊤

k
)i,:∥22 (leverage scores of A⊤

k )

2: Use sampling probabilities {pi} to construct a rescaled random subsampling matrix
Φ ∈ Rr×n

3: return C = AΦ⊤, consisting of r columns of A

This algorithm only gives the C, but now we can make use of generalized least squares to choose X =
C†A = argminX′ ∥A−CX ′∥F. Note that the most expensive part of this algorithm is computing Ak and
its leverage scores, for which again we need to use approximate algorithms.

We have the following guarantee for the above algorithm.

Theorem 4. Suppose r ≳ k log k
ε2 , then Algorithm 4 yields

∥A−CC†A∥F ≤ (1 + ε)∥A−Ak∥F.

Proof of Theorem 4:

∥A−CC†A∥F ≤ ∥A−C(AkΦ
⊤)†Ak∥F

since X ls = C†A minimizes ∥A−CX∥F
= ∥A− (AΦ⊤)(AkΦ

⊤)†Ak∥F
(i)

≤ (1 + ε)∥A−AA†
kAk∥F

= (1 + ε)∥A−Ak∥F

8



where the key inequality (i) follows from approximation guarantee (6) for the generalized least squares
problem minY ∥A− Y Ak∥F =

∥∥A⊤
k Y

⊤ −A⊤
∥∥
F
, as we will now detail. This problem has optimal solution

(Y ls)⊤ = (A⊤
k )

†A⊤ which has objective value
∥∥A⊤

k (A
⊤
k )

†A⊤ −A⊤
∥∥
F
, while the subsampled problem has

solution (Ỹ ls)⊤ = (ΦA⊤
k )

†ΦA⊤, so by the approximation guarantee its optimal value is within (1 + ε) that
of the original problem:

∥A− (AΦ⊤)(AkΦ
⊤)†Ak∥F ≤ (1 + ε)

∥∥A⊤
k (A

⊤
k )

†A⊤ −A⊤∥∥
F
.

Taking transpose gives the inequality (i).

3.3 More Examples

The key difference between this strategy for choosing C and the strategies from our previous Algorithms 2
and 3 is that we sample using leverage scores rather than column norms. As we will now see, this fixes the
types of issues that we identified with our earlier example.

• Consider the matrix

A =


100 100 100 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0



=


1 0
0 1
0 0
...

...
0 0


[
100

√
3 0

0
√
3

] [
1/
√
3 1/

√
3 1/

√
3 0 0 0

0 0 0 1/
√
3 1/

√
3 1/

√
3

]
.

As we see from its SVD, all the leverage scores (of A⊤) are the same, causing us not to over-emphasize
the high-norm columns.

• Consider the matrix

A =


1 0 0 0 0 0
0 1 1 1 1 1
0 0 0 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0



=


1 0
0 1
0 0
...

...
0 0


[
1 0

0
√
5

] [
1 0 0 0 0 0

0 1/
√
5 1/

√
5 1/

√
5 1/

√
5 1/

√
5

]
.

The first column is essential to capturing the column space, whereas columns 2 through 6 are inter-
changeable. This is reflected in the leverage scores (1 for the first column versus 1/

√
5 for the remaining

columns).

9



3.4 Final Remarks

• Our final Theorem 4 is a culmination of all of our results on randomized numerical linear algebra,
making use of approximate matrix multiplication with nonuniform sampling proportional to leverage
scores, in turn requiring the SRHT to approximate the leverage scores, and finally using guarantees
from approximate least squares.

• Randomized numerical linear algebra is a rapidly-developing area, and more information is provided
in the references.

• A long-term goal of the randomized linear algebra research program is to develop libraries for these
problems which could rival LAPACK in not only speed, but also robustness and stability. Despite
many theoretical advances, practical implementations are still works in progress.

References

[Ailon and Chazelle, 2009] Ailon, N. and Chazelle, B. (2009). The fast johnson–lindenstrauss transform and
approximate nearest neighbors. SIAM Journal on computing, 39(1):302–322.

[Drineas et al., 2011] Drineas, P., Mahoney, M. W., Muthukrishnan, S., and Sarlós, T. (2011). Faster least
squares approximation. Numerische mathematik, 117(2):219–249.

[Halko et al., 2011] Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011). Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review,
53(2):217–288.

[Magen and Zouzias, 2011] Magen, A. and Zouzias, A. (2011). Low rank matrix-valued chernoff bounds and
approximate matrix multiplication. In Proceedings of the twenty-second annual ACM-SIAM symposium
on Discrete Algorithms, pages 1422–1436. SIAM.

[Mahoney, 2011] Mahoney, M. W. (2011). Randomized algorithms for matrices and data. Foundations and
Trends® in Machine Learning, 3(2):123–224.

[Mahoney, 2016] Mahoney, M. W. (2016). Lecture notes on randomized linear algebra.

[Tropp, 2011] Tropp, J. A. (2011). Improved analysis of the subsampled randomized hadamard transform.
Advances in Adaptive Data Analysis, 3(01n02):115–126.

10


	Lecture 26 – Lecture 26: Randomized Numerical Linear Algebra III
	Recap
	Low-Rank Matrix Approximation
	Basic Algorithmic Strategy
	Analysis
	Frobenius Approximation Error
	Spectral Approximation Error

	Algorithms
	Non-Uniform Sampling Algorithm
	An Improved Multi-Pass Algorithm

	Types of Matrix Decomposition
	An Example

	Multiplicative Error Guarantees for CX Decomposition
	Generalized Least Squares Problems
	Another Algorithm for CX Decomposition
	More Examples
	Final Remarks



