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Lecture 2: Non-parametric Bradley-Terry Model
Lecturer: Yudong Chen Scribe: Augustine(Runshi) Tang

In this lecture, we will introduce another application of Spectral Algorithm and Matrix Bernstein Inequal-
ity, which is to prove a upper bound for a result of Spectral Algorithm used on the so called Non-parametric
Bradley-Terry Model.1

1 Notation

A quick summary of the notation.

1. Random variables: X,Y, U, V

2. Ranges/alphabets: X ,Y,U ,V

3. Specific values: x, y, u, v

For a vector u ∈ Rd, we use ‖u‖2 to denote its `2 norm and ‖u‖∞ its `∞ norm. For a matrix A ∈ Rd1×d2 ,
we use ‖A‖F to denote its Frobenius norm and ‖A‖op its operator/spectral norm (i.e., the largest singular

value of A). For two matrices A,B of the same dimension, 〈A,B〉 := tr(A>B) denotes their trace inner
product. The trace inner product reduces to the usual inner product between vectors for when A,B ∈ Rd×1.

2 Preliminaries

Lemma 1 (Matrix Bernstein’s inequality2). Let X1, . . . , XN be independent, mean zero, n × n symmetric
random matrices, such that ‖Xi‖ ≤ K almost surely for all i. Then, for every t ≥ 0, we have

P


∥∥∥∥∥

N∑
i=1

Xi

∥∥∥∥∥
op

≥ t

 ≤ 2n exp

(
− t2/2

σ2 +Kt/3

)
.

Here σ2 =
∥∥∥∑N

i=1 EX2
i

∥∥∥
op

is the norm of the matrix variance of the sum. In particular, we can express this

bound as the mixture of sub-gaussian and sub-exponential tail, just like in the scalar Bernstein’s inequality:

P


∥∥∥∥∥

N∑
i=1

Xi

∥∥∥∥∥
op

≥ t

 ≤ 2n exp

[
−c ·min

(
t2

σ2
,
t

K

)]

Lemma 2 (Eckart-Young-Mirsky Theorem3). Let

D = UΣV > ∈ Rm×n, m ≥ n

be the singular value decomposition (SVD) of D and partition U,Σ =: diag (σ1, . . . , σm), and V as follows:

U =:
[
U1 U2

]
, Σ =:

[
Σ1 0
0 Σ2

]
, and V =:

[
V1 V2

]
1Reference: Chatterjee, Sourav. ”Matrix estimation by universal singular value thresholding.” The Annals of Statistics 43.1

(2015): 177-214. Section 2.7.
2Reference: Theorem 5.4.1 of HDP-book.
3Reference: https://en.wikipedia.org/wiki/Low-rank approximation

1



where U1 is m× r,Σ1 is r× r, and V1 is n× r, and σ1 ≥ · · · ≥ σm. Then the rank- r matrix, obtained from
the truncated singular value decomposition

D̂∗ = U1Σ1V
>
1 ,

satisfies ∥∥∥D − D̂∗∥∥∥
F

= min
rank(D̂)≤r

‖D − D̂‖F =
√
σ2
r+1 + · · ·+ σ2

m

The minimizer D̂∗ is unique if and only if σr+1 6= σr.

In words, D̂∗, given by the truncated SVD of D, is a best rank-r approximation of D.

3 Non-parametric Bradley-Terry Model

Assume an ordered set Ω with n elements ωi and we will use ‘�’ to denote the ordering. This ordering is
unknown, but imagine the setting where one may arrange matches between pairs of items and observe the
results of the matches. The results of the matches are random; if ωi � ωj , then ωi has a higher chance of
beating the opponent than ωj does agains the same opponent.

The Non-parametric Bradley-Terry model formalized the above setting. If ωi � ωj , then P(ωi beats ωk) ≥
P(ωj beats ωk) for any k. Denote a matrix Y ∗ with Y ∗ij := P(ωi beats ωj). Further denote Y ∈ {0, 1}n×n as
an observed random matrix, whose entries independently follow the distribution:

Yij =


1, with probability pY ∗ij ,

0, with probability p(1− Y ∗ij)
0, with probability 1− p,

where p ∈ [0, 1]. This model can be interpreted as follows: there are n teams and we want to find a rank-
ing among them. With probability p, a match is played between a pair of teams independently. We use
Y to denote the results of the matches. If ωi beats ωj in the match, then we write Yij = 1. If ωj beats
ωi, or if a match is not played between them, then we write Yij = 0. Our goal is to estimate Y ∗ given that Y .4

We use a Spectral Algorithm. In particular, our estimator Ŷ is given by the best rank-r approximation
of Y

p , namely

Ŷ := arg min
rank(D)≤r

∥∥∥∥Yp −D
∥∥∥∥
F

,

where we choose the rank as r =
√
np. It will be clear why we choose this value later in the proof of the error

bound. Note that Ŷ can be computed using the truncated SVD of Y
p , thanks to the Eckart-Young-Mirsky

Theorem.
Our proof relies on two intermediate result. An immediate result from the Matrix Bernstein Inequality

is:

Lemma 3. When p > (log n)/n, ∥∥∥∥1

p
Y − Y ∗

∥∥∥∥
op

.

√
n log n

p

holds with high probability.

The proof follows similar lines as in last lecture and is left as an exercise.
We also claim that:

4Given a good estimate of Y ∗, one may further estimate the ranking. We will not discuss this problem in this lecture.
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Claim 1. There exists a rank-r matrix Z such that

{
‖Z − Y ∗‖2F 6

n2

r
|Zij | 6 1,∀i, j .

Proof For each i = 1, . . . , n define the number si ,
∑n

j=1 Y
∗
ij . For each l = 1, . . . , r, define the index set

Tl ,
{
i : si ∈

[
n(l−1)

r , nlr

)}
and let k(l) , first element in Tl.

For each l = 1, . . . , r and all i ∈ Tl, set
Zi− = Y ∗k(l)−.

This gives a matrix Z ∈ [0, 1]n×n with row vectors as Zi− and it has rank less than r.

For each l = 1, . . . , r and each i ∈ Tl:

(1) If ωi � ωk(l):
n∑

j=1

(
Y ∗ij − Zij

)2
=

n∑
j=1

(
Y ∗ij − Y ∗k(l)j

)2
6

n∑
j=1

∣∣∣Y ∗ij − Y ∗k(l)j∣∣∣
=

n∑
j=1

(
Y ∗ij − Y ∗k(l)j

)
= Si − Sk(l)

6
n

r
.

(2) if ωk(l) ≺ ωi:
n∑

j=1

(
Y ∗ij − Zij

)2
=

n∑
j=1

(
Y ∗ij − Y ∗k(l)j

)2
6

n∑
j=1

∣∣∣Y ∗ij − Y ∗k(l)j∣∣∣
= −

n∑
j=1

(
Y ∗ij − Y ∗k(l)j

)
= Sk(l) − Si

6
n

r
.

Sum up over all i, we have ‖Y ∗ − Z‖2F 6
∑n

i=1
n
r = n2

r . �

We are now ready to prove an error upper bound for the estimator Ŷ from Spectral Algorithm.

Let Z be the rank-r matrix given by Claim 1. Since Ŷ is best rank-r approximation of Y
p , we have∥∥∥∥1

p
Y − Z

∥∥∥∥2
F

>

∥∥∥∥1

p
Y − Ŷ

∥∥∥∥2
F

=

∥∥∥∥1

p
Y − Z

∥∥∥∥2
F

+
∥∥∥Ŷ − Z∥∥∥2

F
+ 2

〈
Y

p
− Z,Z − Ŷ

〉
.
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Rearranging terms gives

‖Z − Ŷ ‖2F 6 2

〈
Y

p
− Z, Ŷ − Z

〉
= 2

〈
Y

p
− Y ∗, Ŷ − Z

〉
+ 2

〈
Y ∗ − Z, Ŷ − Z

〉
6 2

∥∥∥∥1

p
Y − Y ∗

∥∥∥∥
op

‖Ŷ − Z‖∗ + 2 ‖Y ∗ − Z‖F ‖Ŷ − Z‖F

6 2

∥∥∥∥1

p
Y − Y ∗

∥∥∥∥
op

√
2r‖Ŷ − Z‖F + 2 ‖Y ∗ − Z‖F ‖Ŷ − Z‖F

So

‖Z − Ŷ ‖F 6 2
√

2r

∥∥∥∥1

p
Y − Y ∗

∥∥∥∥
op

+ 2 ‖Y ∗ − Z‖F

Thus ∥∥∥Ŷ − Y ∗∥∥∥
F
6 ‖Z − Ŷ ‖F + ‖Z − Y ∗‖F

6 2
√

2r

∥∥∥∥1

p
Y − Y ∗

∥∥∥∥
op

+ 3 ‖Z − Y ∗‖F

6 C
√
r

√
n log n

p
+

3n√
r

w.h.p. by Lemma 3 and Claim 1 above

6 C
√
r

√
n log n

p
+

3n
√

log n√
r

,

where C > 0 is a constant from Lemma 3. Choosing r =
√
pn (which approximately balances the two terms

above), we obtain the following error bound for the spectral algorithm.

Theorem 1. Under the above setting, we have, with high probability,

1

n2

∥∥∥Ŷ − Y ∗∥∥∥2
F
.

log n
√
np
.

Note that, if p & log2 n
nε2 , then RHS 6 ε.
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