CS 839 Probability and Learning in High Dimension Lecture 3 - 02/02/2022

Lecture 3: Matrix Concentration I
Lecturer: Yudong Chen Scribe: Zaidan Wu

In this lecture,! we will restate Matrix Bernstein’s inequality and introduce some properties of Matrix
calculus as well as Lieb’s theorem as background for the proof of this inequality.

1 Notation

A quick summary of the notation.
1. Random variables or matrices: X,Y
2. Specific values: b,0,c
For two scalars a,b, a < b means that there is a constant ¢ and a < ¢ b.

For a matrix A € R%*492 we use [All,, to denote its operator/spectral norm (i.e., the largest singular
value of A).

If Ais a d x d symmetric matrix and its eigenvalues are sorting as Ay > Ay > ...y, then we denote
Ai(A) be the i-th largest eigenvalue of A, namely \;(A4) = A;.

For two d x d symmetric matrices A, B, the positive-semidefinite ordering A > B means that A — B is
positive-semidefinite matrix. It implies that \;(A — B) > 0, namely, for i = 1,...,d.

2 Statement

Theorem 1 (Matrix Bernstein’s inequality). Suppose X1, ..., X, € R"*% qre independent random matri-
ces with the following conditions:

e E[X;] =0, forallic {1,2,...,n}.

o || Xill,, < b almost surely for all i € {1,2,...,n}.
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Then for every t > 0, we have
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P >t| < (di + do) exp (_tz/?) . (1)
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Remark The upper bound in equation (1) implies that
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! Reading: Section 6 in J. Tropp, An Introduction to Matrix Concentration Inequalities. https://arxiv.org/abs/1501.01571
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where ¢ is constant that should be independent of every parameter in the statement. This upper bound
2
indicates that: if ¢ is large such that % > %, then the upper bound is proportional to exp (—%) which is
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called the sub-exponential tail, in which case the random variable has a density whose tail is

op
not heavier than exponential random variable. Otherwise, if ¢ is small, the upper bound is proportional to

exp (fﬁ) which is called the sub-Gaussian tail and the density is not heavier than normal random variable.
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Remark This upper bound implies so-called user-friendly form of inequality, which is obtained by choosing
an appropriate value of ¢ such that with probability at least 1 — (d; + do)~10:
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However, one drawback of this inequality is the logarithm factor depending on the dimensions of matrices.

< Vo?log(di + da) + blog(dr + da).

op

The rest of this lecture is devoted to the proof the matrix Bernstein inequality.

3 Matrix Theory Background

The proof of scalar Bernstein’s inequality uses the Laplace transform of random variable. In order to draw
an analogy the proof to the matrix Bernstein’s inequality, we define the functions of matrices as following.

Definition 1 (Matrix Functions). For symmetric matriz A € R¥™9  its eigen-decomposition is
A=UAU",
where U is orthogonal matriz, that is UUT = UTU = I and A is diagonal matriz:

A1
A=
Ad
Then for a real value function f, we define
f(A) =UFAUT,
where
f(n)
fa) =
f(Aa)

Example 2. Consider function f(a) = ¢y + c1a + coa® + ... and symmetric matrix A, since A¥ = UA*UT,
we have

f(A) =co+c1A+caA® 4 ...,



oo
Example 3 (Matrix exponential). Let f(z) =e* =1+ > %xk, then exponential function of symmetric
k=1

matrix A € R?? by following Definition 1 is

1
A _ . T _ k
et =U . U 7I+E k!A'
k=1

e

Monotonicity holds: H = A = tr (eH) > tr (eA) if , which is directly proven by the definition of positive-
semidefinite ordering and matrix functions.

Example 4 (Matrix logarithm). The logarithm of positive definite matrix is defined via setting f(x) =
log(x). In addition, for any symmetric matrix A we have

log(e?) = A.

Matrix logarithm satisfies the operator monotonicity property: H = A = 0 = log(H) = log(A). The proof
of this property requires some non-trivial work.

Definition 2 (Matrix MGF and CGF). For 6 € R and random matriz X, the matriz moment generating
function (MGF) is
Mx(0) 2 E ["].

The cumulant generating function (CGF) is
Kx(0) £log [E [eax]] .
For a scalar random variable Y and any 6 > 0, by Markov’s inequality:

S =P (Y > o) < inf e . E(PY).
P(Y >t)=P (e _e)_gr;%e E(e”")

Similarly, Lemma 1 is a matrix version of this inequality.

Lemma 1. Suppose Y is a random symmetric matriz, then for any t € R

P(Amax(Y) > 1) < gr;% e " E [tr (eoy)] , (2)

where Amax 18 the mazimum eigenvalue of Y.

Proof Note that e®max(Y) = X\ . (e9Y) <30, N (e7Y) = tr (e”Y) since eigenvalues of €Y are positive.
Thus for any 6 > 0, we have

Taking infimum over 6 > 0, the inequality is proven as desired. O



4 Lieb’s theorem

The MGF of sum of independent scalar random variables is equal to the product of MGF of random variables.
That is, for independent scalar random variables X1,..., X,

E (69(X1+"'X"')) - F <69X1) ... E (@exn) . (3)

However, for matrix version, we don’t have this perfectly useful tool for our proof. In general, for two

matrices Y7, Y5,

eYI +Y> 75 eyl Y>

- €

unless Y7 and Y5 commute.
Fortunately, the Lieb’s theorem helps us to overcome this challenge. Recall that a function f is concave
iff for any x,y in the domain of f and any a € [0,1], f (ax + (1 — a)y) > af(x) + (1 — a) f(y).

Theorem 5 (Lieb’s theorem). For a fized symmetric matric H, the function of A, f(A) defined through
F(A) £ tr (exp (H + log(A)))
is concave on the space of positive definite symmetric matrices with the same size as H.

The Lieb’s theorem is a deep result. See the referenced paper for a proof. In this lecture, we take this
theorem for granted.

Using the Lieb’s theorem, we can get a generalization of equation (3).

Lemma 2. Suppose X1, ..., X, are independent symmetric matrices, then
trexp K( N >(9) =E ltr exp (92)(1)] < trexp (Z logE [dﬂﬁ-]) = trexp (Z Kx,(0) (4)
2 X i=1 i=1 i=1
i=1 - -



