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Lecture 4: Matrix Concentration II
Lecturer: Yudong Chen Scribe: Jinwen Sun

In this lecture,1 we will complete the proof of Matrix Bernstein’s inequality. We will also introduce the
scalar Hoeffding and Bernstein’s inequalities.

1 Notation

A quick summary of the notation:
For a matrix A ∈ Rd1×d2 , we use ‖A‖op to denote its operator/spectral norm (i.e., the largest singular

value of A.
For two d× d symmetric matrices A,B, the positive-semidefinite ordering A � B means that A − B is

positive-semidefinite matrix, i.e., λi(A−B) ≥ 0,∀i. It implies that λi(A) ≥ λi(B), for i = 1, ..., d.

2 Recap

We have introduced the statement of Matrix Bernstein’s Inequality, and covered several theorems which
would be leveraged for the proof of Matrix Bernstein’s Inequality.

Theorem 1 (Matrix Bernstein’s Inequality). Suppose X1, ..., Xn ∈ Rd1×d2 are independent random matrices
satisfying the following conditions:

• E[Xi] = 0, for all i ∈ {1, 2, ..., n},

• ‖Xi‖op ≤ b almost surely for all i ∈ {1, 2, ..., n},

• max

[∥∥∥∥E n∑
i=1

XiX
>
i

∥∥∥∥
op

,

∥∥∥∥E n∑
i=1

X>i Xi

∥∥∥∥
op

]
≤ σ2,

then for every t > 0, we have

P

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
op

≥ t

 ≤ (d1 + d2) exp

(
−t2/2

σ2 + bt/3

)
. (1)

Lemma 1 (Matrix Laplace Transform). Suppose Y is a random symmetric matrix, then for any t ∈ R,

P(λmax(Y ) ≥ t) ≤ inf
θ>0

e−θt · E[tr(eθY )],

where λmax(Y ) is the maximum eigenvalue of Y .

Theorem 2 (Lieb’s Theorem). For a fixed symmetric matrix H, the matrix function f defined through

f(A) , tr exp(H + logA)

is concave on the space of positive symmetric matrices with the same size as H.

The Lieb’s Theorem together with Jensen’s inequality implies that

E[tr exp(H +X)] ≤ tr exp(h+ logE[eX ]). (2)
1Reading: Section 6 in J. Tropp, An Introduction to Matrix Concentration Inequalities. https://arxiv.org/abs/1501.01571
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3 Matrix Theory Background, cont’d

With Lieb’s theorem, we can proof the following lemma, which is the key in the proof of Matrix Bernstein’s
Inequality.

Lemma 2 (Sub-additivity of Matrix MGF). Suppose X1, ..., Xn are independent symmetric matrices, then

E

[
tr exp(θ

n∑
i=1

Xi)

]
≤ tr exp

(
n∑
i=1

logE[eθXi ]

)
, for all θ. (3)

Proof We note that the summation of θ
∑n
i=1Xi can be decomposed and the Equation (2) implied by

the Lieb’s Theorem can be applied iteratively as follows:

E

[
tr exp(θ

n∑
i=1

Xi)

]
= E

[
tr exp

(
θ

n−1∑
i=1

Xi + θXn

)]

= E

[
E

[
tr exp

(
θ

n−1∑
i=1

Xi + θXn

)
|X1, ..., Xn−1

]]
(i)

≤ E

[
tr exp

(
θ

n−1∑
i=1

Xi + logE[exp(θXn)|X1, ..., Xn−1]

)]
(ii)
= E

[
tr exp

(
θ

n−2∑
i=1

Xi + logE[exp(θXn)] + θXn−1

)]
≤ ...

≤ tr exp

(
n∑
i=1

logE[exp(θXi)]

)
,

where step (i) follows from invoking the inequality (2), and step (ii) follows from independence.

By combining Lemma 1 and Lemma 2, the following Theorem 3 (Master Bound) can be derived.

Theorem 3 (Master Bound). Suppose X1, ..., Xn are independent symmetric matrices, then for any t ∈ R,

P [λmax(Y ) ≥ t] ≤ inf
θ>0

e−θt · tr exp

(
n∑
i=1

logE[eθXi ]

)
.

The master bound (and its variants) can be used to prove the matrix versions of different inequalities,
such as Hoeffding, Bernstein, Chernoff, Azuma, Bounded Difference, Bennett, Freeman.

4 Proof of the Matrix Bernstein’s Inequality

We shall prove the following symmetric version of the Matrix Bernstein’s inequality.

Theorem 4 (Matrix Bernstein’s Inequality: Symmetric Case). Suppose X1, ..., Xn ∈ Rd×d are independent
symmetric random matrices with the following conditions:

• E[Xi] = 0, for all i ∈ {1, 2, ..., n},

• λmax(Xi) ≤ b almost surely for all i ∈ {1, 2, ..., n},

• ‖
n∑
i=1

Xi‖op ≤ σ2,
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then for every t > 0, we have

P

[
λmax(

n∑
i=1

Xi) ≥ t

]
≤ d exp

(
−t2/2

σ2 + bt/3

)
. (4)

Remark To prove the rectangular version of Matrix Bernstein’s Inequality in Theorem 1, we can apply

Theorem 4 to the symmetric matrix Y =

[
X

X>

]
, where X ∈ Rd1×d2 is an general rectangular matrix

and Y ∈ R(d1+d2)×(d1+d2) called the symmetric dilation of X. We can then use λmax(Y ) = ‖X‖op to finish
the proof.

Proof Define the scalar function f as

f(x) ,
eθx − 1− θx

x2
.

which is an increasing function.
For any symmetric matrix X with λmax(X) ≤ b, we have

eθX = I + θX +Xf(X)X

� I + θX + f(b)X2.

We use a scalar inequality: for any θ : 0 < θ < 3
b , it holds that

f(b) =
eθb − 1− θb

b2

=
1

b2

∞∑
k=2

(θb)k

k!

≤ θ2

2

∞∑
k=2

(θb)k−2

3k−2

=
θ2/2

1− θb/3
.

Combining the above inequalities, we have for any θ : 0 < θ < 3
b , and any X : λmax(X) ≤ b, it holds that

eθX � I + θX +
θ2/2

1− θb/3
X2.

It follows that

E[eθX ] � I + 0 +
θ2/2

1− θb/3
E[X2]

� exp

(
θ2/2

1− θb/3
E[X2]

)
,

Since matrix logarithm is operator monotone, we obtain that

logE[eθX ] � θ2/2

1− θb/3
E[X2]. (5)
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Letting g(θ) := θ2/2
1−θb/3 , we have

P

[
λmax(

n∑
i=1

Xi) ≥ t

]
≤ inf
θ>0

tr exp

(
n∑
i=1

logE[eθXi ]

)
eθt

≤ inf
0<θ< 3

b

tr exp

(
n∑
i=1

g(θ)E[X2
i ]

)
eθt

≤ inf
0<θ< 3

b

d · exp
(
g(θ)σ2

)
eθt

,

Here the first inequality is due to the Theorem 3 (Master Bound), and the second inequality is due to the
Equation (5).

Taking θ = t/(σ2 + bt/3) and simplifying the expression, we have the desired bound

P

[
λmax(

n∑
i=1

Xi) ≥ t

]
≤ d · exp

(
−t2/2

σ2 + bt/3

)
.

Remark

• The proof is quite similar to that of the scalar Bernstein’s Inequality. Most of the hard work is done
by the Lieb’s Theorem.

• The dimension factor on the right hand side of Equation (4) leads to the
√

log d factor in the user-friend
form of the matrix Bernstein’s inequality (see last lecture).

• To prove a tighter bound and relax this dimension dependence, one must better capture non-commutativity.
There is active research on achieving such improvement but it is outside the scope of this course.

5 Sub-Gaussian/Exponential Random Variables and Scalar Ho-
effding/Bernstein Inequalities

In this section,2,3,4 we will briefly introduce the scalar versions of Hoeffding’s Inequality and Bernstein’s
Inequality.

Definition 1. A variable X is called sub-Gaussian with parameter σ2, denoted as sub-Gaussian(σ2), if

E eλ(X−E[X]) ≤ eλ
2σ2/2, for all λ ∈ R. (6)

Note that the right hand side above is the MGF of a zero-mean Gaussian random variable with variance
σ2.
Example 1 (Rademacher). If a random variable X ∈ {−1,+1} with the equal probability 1/2 for −1 and
1, then X is sub-Gaussian(12).

2Reading: Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Section 2.1
3Reading: Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Section 2
4Reading: John Duchi’s Lecture Notes, Section 3.1 https://web.stanford.edu/class/stats311/lecture-notes.pdf
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Proof For all λ, we have

E eλX =
1

2
eλ +

1

2
e−λ

=
1

2

∞∑
k=0

λk

k!
+

1

2

∞∑
k=0

(−λ)k

k!

=

∞∑
k=0

λ2k

(2k)!

≤
∞∑
k=0

(λ2)k

2kk!

= eλ
2/2.

Example 2 (Bounded RV). If a random variable X ∈ [a, b] with probability 1, then X is sub-Gaussian((b−
a)2).
Proof We prove this by a symmetrization argument. Let ε ∈ {−1,+1} be a random variable with equal
probability 1/2 for −1 and +1, and X

′
be an independent copy of X. Then we have E[X

′
] = E[X] and

E eλ(X−E[X]) = E eλ(X−E[X
′
])

≤ E eλ(X−X
′
)

= E eλε(X−X
′
)

= E[E[eλε(X−X
′
)|X,X

′
]]

≤ E[eλ
2(X−X

′
)2/2]

≤ eλ
2(b−a)2/2.

The first inequality follows from the Jensen’s Inequality, and the second inequality follows from the previous
example.

The lemma below provides an equivalent characterization of a sub-Gaussian random variable in terms of
its tail probability.

Lemma 3. A variable X is sub-Gaussian(σ2) if and only if for some universal constant c > 0,

P[|X| ≥ t] ≤ 2e−t
2/cσ2

, for all t ≥ 0. (7)

We now state the Hoeffding’s inequality for sum of independent sub-Gaussian random variables. It
generalizes the more commonly known Hoeffding’s inequality for sum of bounded random variables.

Theorem 5 (Hoeffding’s Inequality). If Xi’s are independent sub-Gaussian(σ2
i ) random variables, then for

any t ≥ 0,

P

[∣∣∣∑
i

(Xi − EXi)
∣∣∣ ≥ t] ≤ 2 exp

(
− t2

2
∑
i σ

2
i

)
,

i.e.,
∑
i

Xi is sub-Gaussian(
∑
i

σ2
i ).
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One consequence of Hoeffding’s Ineqaulity is

∣∣ 1
n

∑
i

(Xi − EXi)
∣∣∣ . σ

√
log 1/δ√
n

,

with probability 1− δ.

Definition 2. A variable X is called sub-exponential with parameters (τ2, b), denoted as sub-exponential(τ2, b),
if

E eλ(X−E[X]) ≤ eλ
2τ2/2, for all λ ∈ R with |λ| ≤ 1

b
. (8)

Example 3 (Gaussian Squared). If a variable Z follows the normal distribution N(0, 1) and X , Z2, then
X is sub-exponential(2, 4).
Example 4 (Bounded RV). If a variable X ∈ [−b, b], with mean E[X] = 0 and variance var(X) = σ2, then
X is sub-Gaussian((2b)2), and is also sub-exponential(6σ2/5, 2b).

We now state the Bernstein’s inequality for sum of independent sub-exponential random variables. It
generalizes the more commonly known Bernstein’s inequality for sum of bounded random variables.

Theorem 6 (Bernstein’s Inequality). If Xi’s are independent sub-exponential(σ2
i , bi) random variables with

E[Xi] = 0, then for any t ≥ 0,

P

[∣∣∣∑
i

Xi

∣∣∣ ≥ t] ≤ 2 exp

−1

2
min

{
t2∑
i

σ2
i

,
t

max
i
bi

} .
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