CS 839 Probability and Learning in High Dimension	Lecture 4-02/07/2022
Lecture 4: Matrix Concentration II	
Lecturer: Yudong Chen	Scribe: Jinwen Sun

In this lecture ${ }^{1}$ we will complete the proof of Matrix Bernstein's inequality. We will also introduce the scalar Hoeffding and Bernstein's inequalities.

1 Notation

A quick summary of the notation:
For a matrix $A \in \mathbb{R}^{d_{1} \times d_{2}}$, we use $\|A\|_{o p}$ to denote its operator/spectral norm (i.e., the largest singular value of A.

For two $d \times d$ symmetric matrices A, B, the positive-semidefinite ordering $A \succeq B$ means that $A-B$ is positive-semidefinite matrix, i.e., $\lambda_{i}(A-B) \geq 0, \forall i$. It implies that $\lambda_{i}(A) \geq \lambda_{i}(B)$, for $i=1, \ldots, d$.

2 Recap

We have introduced the statement of Matrix Bernstein's Inequality, and covered several theorems which would be leveraged for the proof of Matrix Bernstein's Inequality.
Theorem 1 (Matrix Bernstein's Inequality). Suppose $X_{1}, \ldots, X_{n} \in \mathbb{R}^{d_{1} \times d_{2}}$ are independent random matrices satisfying the following conditions:

- $\mathbb{E}\left[X_{i}\right]=0$, for all $i \in\{1,2, \ldots, n\}$,
- $\left\|X_{i}\right\|_{o p} \leq b$ almost surely for all $i \in\{1,2, \ldots, n\}$,
- $\max \left[\left\|\mathbb{E} \sum_{i=1}^{n} X_{i} X_{i}^{\top}\right\|_{o p},\left\|\mathbb{E} \sum_{i=1}^{n} X_{i}^{\top} X_{i}\right\|_{o p}\right] \leq \sigma^{2}$,
then for every $t>0$, we have

$$
\begin{equation*}
\mathbb{P}\left[\left\|\sum_{i=1}^{n} X_{i}\right\|_{o p} \geq t\right] \leq\left(d_{1}+d_{2}\right) \exp \left(\frac{-t^{2} / 2}{\sigma^{2}+b t / 3}\right) \tag{1}
\end{equation*}
$$

Lemma 1 (Matrix Laplace Transform). Suppose Y is a random symmetric matrix, then for any $t \in \mathbb{R}$,

$$
\mathbb{P}\left(\lambda_{\max }(Y) \geq t\right) \leq \inf _{\theta>0} e^{-\theta t} \cdot \mathbb{E}\left[\operatorname{tr}\left(e^{\theta Y}\right)\right]
$$

where $\lambda_{\max }(Y)$ is the maximum eigenvalue of Y.
Theorem 2 (Lieb's Theorem). For a fixed symmetric matrix H, the matrix function f defined through

$$
f(A) \triangleq \operatorname{tr} \exp (H+\log A)
$$

is concave on the space of positive symmetric matrices with the same size as H.
The Lieb's Theorem together with Jensen's inequality implies that

$$
\begin{equation*}
\mathbb{E}[\operatorname{tr} \exp (H+X)] \leq \operatorname{tr} \exp \left(h+\log \mathbb{E}\left[e^{X}\right]\right) \tag{2}
\end{equation*}
$$

[^0]
3 Matrix Theory Background, cont'd

With Lieb's theorem, we can proof the following lemma, which is the key in the proof of Matrix Bernstein's Inequality.

Lemma 2 (Sub-additivity of Matrix MGF). Suppose X_{1}, \ldots, X_{n} are independent symmetric matrices, then

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{tr} \exp \left(\theta \sum_{i=1}^{n} X_{i}\right)\right] \leq \operatorname{tr} \exp \left(\sum_{i=1}^{n} \log \mathbb{E}\left[e^{\theta X_{i}}\right]\right), \quad \text { for all } \theta \tag{3}
\end{equation*}
$$

Proof We note that the summation of $\theta \sum_{i=1}^{n} X_{i}$ can be decomposed and the Equation (2) implied by the Lieb's Theorem can be applied iteratively as follows:

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{tr} \exp \left(\theta \sum_{i=1}^{n} X_{i}\right)\right] & =\mathbb{E}\left[\operatorname{tr} \exp \left(\theta \sum_{i=1}^{n-1} X_{i}+\theta X_{n}\right)\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\operatorname{tr} \exp \left(\theta \sum_{i=1}^{n-1} X_{i}+\theta X_{n}\right) \mid X_{1}, \ldots, X_{n-1}\right]\right] \\
& \stackrel{(i)}{\leq} \mathbb{E}\left[\operatorname{tr} \exp \left(\theta \sum_{i=1}^{n-1} X_{i}+\log \mathbb{E}\left[\exp \left(\theta X_{n}\right) \mid X_{1}, \ldots, X_{n-1}\right]\right)\right] \\
& \stackrel{(i i)}{=} \mathbb{E}\left[\operatorname{tr} \exp \left(\theta \sum_{i=1}^{n-2} X_{i}+\log \mathbb{E}\left[\exp \left(\theta X_{n}\right)\right]+\theta X_{n-1}\right)\right] \\
& \leq \ldots \\
& \leq \operatorname{tr} \exp \left(\sum_{i=1}^{n} \log \mathbb{E}\left[\exp \left(\theta X_{i}\right)\right]\right)
\end{aligned}
$$

where step (i) follows from invoking the inequality (2), and step (ii) follows from independence.
By combining Lemma 1 and Lemma 2, the following Theorem 3 (Master Bound) can be derived.
Theorem 3 (Master Bound). Suppose X_{1}, \ldots, X_{n} are independent symmetric matrices, then for any $t \in \mathbb{R}$,

$$
\mathbb{P}\left[\lambda_{\max }(Y) \geq t\right] \leq \inf _{\theta>0} e^{-\theta t} \cdot \operatorname{tr} \exp \left(\sum_{i=1}^{n} \log \mathbb{E}\left[e^{\theta X_{i}}\right]\right)
$$

The master bound (and its variants) can be used to prove the matrix versions of different inequalities, such as Hoeffding, Bernstein, Chernoff, Azuma, Bounded Difference, Bennett, Freeman.

4 Proof of the Matrix Bernstein's Inequality

We shall prove the following symmetric version of the Matrix Bernstein's inequality.
Theorem 4 (Matrix Bernstein's Inequality: Symmetric Case). Suppose $X_{1}, \ldots, X_{n} \in \mathbb{R}^{d \times d}$ are independent symmetric random matrices with the following conditions:

- $\mathbb{E}\left[X_{i}\right]=0$, for all $i \in\{1,2, \ldots, n\}$,
- $\lambda_{\max }\left(X_{i}\right) \leq b$ almost surely for all $i \in\{1,2, \ldots, n\}$,
- $\left\|\sum_{i=1}^{n} X_{i}\right\|_{o p} \leq \sigma^{2}$,
then for every $t>0$, we have

$$
\begin{equation*}
\mathbb{P}\left[\lambda_{\max }\left(\sum_{i=1}^{n} X_{i}\right) \geq t\right] \leq d \exp \left(\frac{-t^{2} / 2}{\sigma^{2}+b t / 3}\right) \tag{4}
\end{equation*}
$$

Remark To prove the rectangular version of Matrix Bernstein's Inequality in Theorem 1, we can apply Theorem $\left[4\right.$ to the symmetric matrix $Y=\left[\begin{array}{cc} & X \\ X^{\top} & \end{array}\right]$, where $X \in \mathbb{R}^{d_{1} \times d_{2}}$ is an general rectangular matrix and $Y \in \mathbb{R}^{\left(d_{1}+d_{2}\right) \times\left(d_{1}+d_{2}\right)}$ called the symmetric dilation of X. We can then use $\lambda_{\max }(Y)=\|X\|_{o p}$ to finish the proof.

Proof Define the scalar function f as

$$
f(x) \triangleq \frac{e^{\theta x}-1-\theta x}{x^{2}}
$$

which is an increasing function.
For any symmetric matrix X with $\lambda_{\max }(X) \leq b$, we have

$$
\begin{aligned}
e^{\theta X} & =I+\theta X+X f(X) X \\
& \preceq I+\theta X+f(b) X^{2} .
\end{aligned}
$$

We use a scalar inequality: for any $\theta: 0<\theta<\frac{3}{b}$, it holds that

$$
\begin{aligned}
f(b) & =\frac{e^{\theta b}-1-\theta b}{b^{2}} \\
& =\frac{1}{b^{2}} \sum_{k=2}^{\infty} \frac{(\theta b)^{k}}{k!} \\
& \leq \frac{\theta^{2}}{2} \sum_{k=2}^{\infty} \frac{(\theta b)^{k-2}}{3^{k-2}} \\
& =\frac{\theta^{2} / 2}{1-\theta b / 3} .
\end{aligned}
$$

Combining the above inequalities, we have for any $\theta: 0<\theta<\frac{3}{b}$, and any $X: \lambda_{\max }(X) \leq b$, it holds that

$$
e^{\theta X} \preceq I+\theta X+\frac{\theta^{2} / 2}{1-\theta b / 3} X^{2}
$$

It follows that

$$
\begin{aligned}
\mathbb{E}\left[e^{\theta X}\right] & \preceq I+0+\frac{\theta^{2} / 2}{1-\theta b / 3} \mathbb{E}\left[X^{2}\right] \\
& \preceq \exp \left(\frac{\theta^{2} / 2}{1-\theta b / 3} \mathbb{E}\left[X^{2}\right]\right),
\end{aligned}
$$

Since matrix logarithm is operator monotone, we obtain that

$$
\begin{equation*}
\log \mathbb{E}\left[e^{\theta X}\right] \preceq \frac{\theta^{2} / 2}{1-\theta b / 3} \mathbb{E}\left[X^{2}\right] \tag{5}
\end{equation*}
$$

Letting $g(\theta):=\frac{\theta^{2} / 2}{1-\theta b / 3}$, we have

$$
\begin{aligned}
\mathbb{P}\left[\lambda_{\max }\left(\sum_{i=1}^{n} X_{i}\right) \geq t\right] & \leq \inf _{\theta>0} \frac{\operatorname{tr} \exp \left(\sum_{i=1}^{n} \log \mathbb{E}\left[e^{\theta X_{i}}\right]\right)}{e^{\theta t}} \\
& \leq \inf _{0<\theta<\frac{3}{b}} \frac{\operatorname{tr} \exp \left(\sum_{i=1}^{n} g(\theta) \mathbb{E}\left[X_{i}^{2}\right]\right)}{e^{\theta t}} \\
& \leq \inf _{0<\theta<\frac{3}{b}} \frac{d \cdot \exp \left(g(\theta) \sigma^{2}\right)}{e^{\theta t}},
\end{aligned}
$$

Here the first inequality is due to the Theorem 3 (Master Bound), and the second inequality is due to the Equation (5).

Taking $\theta=t /\left(\sigma^{2}+b t / 3\right)$ and simplifying the expression, we have the desired bound

$$
\mathbb{P}\left[\lambda_{\max }\left(\sum_{i=1}^{n} X_{i}\right) \geq t\right] \leq d \cdot \exp \left(\frac{-t^{2} / 2}{\sigma^{2}+b t / 3}\right)
$$

Remark

- The proof is quite similar to that of the scalar Bernstein's Inequality. Most of the hard work is done by the Lieb's Theorem.
- The dimension factor on the right hand side of Equation (4) leads to the $\sqrt{\log d}$ factor in the user-friend form of the matrix Bernstein's inequality (see last lecture).
- To prove a tighter bound and relax this dimension dependence, one must better capture non-commutativity. There is active research on achieving such improvement but it is outside the scope of this course.

5 Sub-Gaussian/Exponential Random Variables and Scalar Hoeffding/Bernstein Inequalities

In this section ${\sqrt{2} 3^{3}}_{4}$ we will briefly introduce the scalar versions of Hoeffding's Inequality and Bernstein's Inequality.

Definition 1. A variable X is called sub-Gaussian with parameter σ^{2}, denoted as sub-Gaussian $\left(\sigma^{2}\right)$, if

$$
\begin{equation*}
\mathbb{E} e^{\lambda(X-\mathbb{E}[X])} \leq e^{\lambda^{2} \sigma^{2} / 2}, \quad \text { for all } \lambda \in \mathbb{R} \tag{6}
\end{equation*}
$$

Note that the right hand side above is the MGF of a zero-mean Gaussian random variable with variance σ^{2}.
Example 1 (Rademacher). If a random variable $X \in\{-1,+1\}$ with the equal probability $1 / 2$ for -1 and 1 , then X is sub-Gaussian $\left(1^{2}\right)$.

[^1]Proof For all λ, we have

$$
\begin{aligned}
\mathbb{E} e^{\lambda X} & =\frac{1}{2} e^{\lambda}+\frac{1}{2} e^{-\lambda} \\
& =\frac{1}{2} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}+\frac{1}{2} \sum_{k=0}^{\infty} \frac{(-\lambda)^{k}}{k!} \\
& =\sum_{k=0}^{\infty} \frac{\lambda^{2 k}}{(2 k)!} \\
& \leq \sum_{k=0}^{\infty} \frac{\left(\lambda^{2}\right)^{k}}{2^{k} k!} \\
& =e^{\lambda^{2} / 2} .
\end{aligned}
$$

Example 2 (Bounded RV). If a random variable $X \in[a, b]$ with probability 1, then X is sub-Gaussian($(b-$ $a)^{2}$).
Proof We prove this by a symmetrization argument. Let $\varepsilon \in\{-1,+1\}$ be a random variable with equal probability $1 / 2$ for -1 and +1 , and X^{\prime} be an independent copy of X. Then we have $\mathbb{E}\left[X^{\prime}\right]=\mathbb{E}[X]$ and

$$
\begin{aligned}
\mathbb{E} e^{\lambda(X-\mathbb{E}[X])} & =\mathbb{E} e^{\lambda\left(X-\mathbb{E}\left[X^{\prime}\right]\right)} \\
& \leq \mathbb{E} e^{\lambda\left(X-X^{\prime}\right)} \\
& =\mathbb{E} e^{\lambda \varepsilon\left(X-X^{\prime}\right)} \\
& =\mathbb{E}\left[\mathbb{E}\left[e^{\lambda \varepsilon\left(X-X^{\prime}\right)} \mid X, X^{\prime}\right]\right] \\
& \leq \mathbb{E}\left[e^{\left.\lambda^{2}\left(X-X^{\prime}\right)^{2} / 2\right]}\right. \\
& \leq e^{\lambda^{2}(b-a)^{2} / 2} .
\end{aligned}
$$

The first inequality follows from the Jensen's Inequality, and the second inequality follows from the previous example.

The lemma below provides an equivalent characterization of a sub-Gaussian random variable in terms of its tail probability.
Lemma 3. A variable X is sub-Gaussian $\left(\sigma^{2}\right)$ if and only if for some universal constant $c>0$,

$$
\begin{equation*}
\mathbb{P}[|X| \geq t] \leq 2 e^{-t^{2} / c \sigma^{2}}, \quad \text { for all } t \geq 0 . \tag{7}
\end{equation*}
$$

We now state the Hoeffding's inequality for sum of independent sub-Gaussian random variables. It generalizes the more commonly known Hoeffding's inequality for sum of bounded random variables.

Theorem 5 (Hoeffding's Inequality). If X_{i} 's are independent sub-Gaussian $\left(\sigma_{i}^{2}\right)$ random variables, then for any $t \geq 0$,

$$
\mathbb{P}\left[\left|\sum_{i}\left(X_{i}-\mathbb{E} X_{i}\right)\right| \geq t\right] \leq 2 \exp \left(-\frac{t^{2}}{2 \sum_{i} \sigma_{i}^{2}}\right),
$$

i.e., $\sum_{i} X_{i}$ is sub-Gaussian $\left(\sum_{i} \sigma_{i}^{2}\right)$.

One consequence of Hoeffding's Ineqaulity is

$$
\left|\frac{1}{n} \sum_{i}\left(X_{i}-\mathbb{E} X_{i}\right)\right| \lesssim \frac{\sigma \sqrt{\log 1 / \delta}}{\sqrt{n}}
$$

with probability $1-\delta$.
Definition 2. A variable X is called sub-exponential with parameters $\left(\tau^{2}, b\right)$, denoted as sub-exponential $\left(\tau^{2}, b\right)$, if

$$
\begin{equation*}
\mathbb{E} e^{\lambda(X-\mathbb{E}[X])} \leq e^{\lambda^{2} \tau^{2} / 2}, \quad \text { for all } \lambda \in \mathbb{R} \text { with }|\lambda| \leq \frac{1}{b} \tag{8}
\end{equation*}
$$

Example 3 (Gaussian Squared). If a variable Z follows the normal distribution $N(0,1)$ and $X \triangleq Z^{2}$, then X is sub-exponential $(2,4)$.
Example 4 (Bounded RV). If a variable $X \in[-b, b]$, with mean $\mathbb{E}[X]=0$ and variance $\operatorname{var}(X)=\sigma^{2}$, then X is sub-Gaussian $\left((2 b)^{2}\right)$, and is also sub-exponential $\left(6 \sigma^{2} / 5,2 b\right)$.

We now state the Bernstein's inequality for sum of independent sub-exponential random variables. It generalizes the more commonly known Bernstein's inequality for sum of bounded random variables.
Theorem 6 (Bernstein's Inequality). If X_{i} 's are independent sub-exponential $\left(\sigma_{i}^{2}, b_{i}\right)$ random variables with $\mathbb{E}\left[X_{i}\right]=0$, then for any $t \geq 0$,

$$
\mathbb{P}\left[\left|\sum_{i} X_{i}\right| \geq t\right] \leq 2 \exp \left(-\frac{1}{2} \min \left\{\frac{t^{2}}{\sum_{i} \sigma_{i}^{2}}, \frac{t}{\max _{i} b_{i}}\right\}\right)
$$

[^0]: ${ }^{1}$ Reading: Section 6 in J. Tropp, An Introduction to Matrix Concentration Inequalities. https://arxiv.org/abs/1501.01571

[^1]: ${ }^{2}$ Reading: Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Section 2.1
 ${ }^{3}$ Reading: Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Section 2
 ${ }^{4}$ Reading: John Duchi's Lecture Notes, Section 3.1 https://web.stanford.edu/class/stats311/lecture-notes.pdf

