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In this lectureE we will complete the proof of Matrix Bernstein’s inequality. We will also introduce the
scalar Hoeffding and Bernstein’s inequalities.

1 Notation

A quick summary of the notation:

For a matrix A € R%*%  we use ||Al|,, to denote its operator/spectral norm (i.e., the largest singular
value of A.

For two d x d symmetric matrices A, B, the positive-semidefinite ordering A > B means that A — B is
positive-semidefinite matrix, i.e., A\;(A — B) > 0, Vi. It implies that \;(A) > X\;(B), for i =1, ..., d.

2 Recap

We have introduced the statement of Matrix Bernstein’s Inequality, and covered several theorems which
would be leveraged for the proof of Matrix Bernstein’s Inequality.

Theorem 1 (Matrix Bernstein’s Inequality). Suppose X1, ..., X,, € R%*% gre independent random matrices
satisfying the following conditions:

e E[X;] =0, foralli e {1,2,....,n},

o | Xi|lop < b almost surely for alli € {1,2,...,n},
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Lemma 1 (Matrix Laplace Transform). Suppose Y is a random symmetric matriz, then for any t € R,

P(/\max(y) > t) < énf(‘) e 0t .E[tr(GGY)L
>

where Amax(Y) is the mazimum eigenvalue of Y.
Theorem 2 (Lieb’s Theorem). For a fized symmetric matriz H, the matriz function f defined through
f(A) & trexp(H + log A)
is concave on the space of positive symmetric matrices with the same size as H.
The Lieb’s Theorem together with Jensen’s inequality implies that

E[trexp(H + X)] < trexp(h + logE[eX]). (2)
! Reading: Section 6 in J. Tropp, An Introduction to Matrix Concentration Inequalities. https://arxiv.org/abs/1501.01571



https://arxiv.org/abs/1501.01571

3 Matrix Theory Background, cont’d

With Lieb’s theorem, we can proof the following lemma, which is the key in the proof of Matrix Bernstein’s
Inequality.

Lemma 2 (Sub-additivity of Matrix MGF). Suppose X1, ..., X,, are independent symmetric matrices, then

tr eXp(Gzn:Xi)l < trexp <z": logJE[eeXi]> ) for all 6. (3)
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Proof We note that the summation of #)." | X; can be decomposed and the Equation (2) implied by
the Lieb’s Theorem can be applied iteratively as follows:

E [trexp(@Zn:Xi)] =E [trexp (0712_: X+ 9Xn>]
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where step (i) follows from invoking the inequality (2), and step (ii) follows from independence. O

By combining Lemma [I| and Lemma [2] the following Theorem [3| (Master Bound) can be derived.

Theorem 3 (Master Bound). Suppose X, ..., X,, are independent symmetric matrices, then for anyt € R,

P Y)>t] < infe . log E[e?X7] | .
[Amax ( )_t]_;r;oe trexp (; ogEle"*]

The master bound (and its variants) can be used to prove the matrix versions of different inequalities,
such as Hoeffding, Bernstein, Chernoff, Azuma, Bounded Difference, Bennett, Freeman.

4 Proof of the Matrix Bernstein’s Inequality

We shall prove the following symmetric version of the Matrix Bernstein’s inequality.

Theorem 4 (Matrix Bernstein’s Inequality: Symmetric Case). Suppose X1, ..., X,, € R¥*? are independent
symmetric random matrices with the following conditions:

e E[X;] =0, foralli € {1,2,...,n},
o Mnax(X;) < b almost surely for alli € {1,2,...,n},

n
o 112 Xillop = a2,
1=



then for every t > 0, we have
P [Amaxé X)) > t] < desp (‘”2) . (1)
P o2+ bt/3
Remark  To prove the rectangular version of Matrix Bernstein’s Inequality in Theorem [I} we can apply
xT

and Y € R(d1+d2)x(di+d2) called the symmetric dilation of X. We can then use Apax(Y) = || X||op to finish
the proof.

Theorem M| to the symmetric matrix ¥ = [ ] , where X € R4 *% is an general rectangular matrix

Proof Define the scalar function f as

which is an increasing function.
For any symmetric matrix X with Apax(X) < b, we have

X =T+0X + Xf(X)X
< I1+60X + f(b)X*2

We use a scalar inequality: for any 6 : 0 < 0 < %, it holds that
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Combining the above inequalities, we have for any 6 : 0 < 6 < %, and any X : Apax(X) < b, it holds that
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It follows that
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Since matrix logarithm is operator monotone, we obtain that
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Letting g(6) := Wlﬁ/s’

we have
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Here the first inequality is due to the Theorem [3| (Master Bound), and the second inequality is due to the
Equation (f).
Taking 6 = t/(0? + bt/3) and simplifying the expression, we have the desired bound
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Remark

e The proof is quite similar to that of the scalar Bernstein’s Inequality. Most of the hard work is done
by the Lieb’s Theorem.

e The dimension factor on the right hand side of Equation leads to the v/logd factor in the user-friend
form of the matrix Bernstein’s inequality (see last lecture).

e To prove a tighter bound and relax this dimension dependence, one must better capture non-commutativity.
There is active research on achieving such improvement but it is outside the scope of this course.

5 Sub-Gaussian/Exponential Random Variables and Scalar Ho-
effding /Bernstein Inequalities

In this SectionEHEHﬂ we will briefly introduce the scalar versions of Hoeffding’s Inequality and Bernstein’s
Inequality.

Definition 1. A variable X is called sub-Gaussian with parameter o2, denoted as sub-Gaussian(o?), if
E MY -EIX]) < o2P0?/2. for all X € R. (6)

Note that the right hand side above is the MGF of a zero-mean Gaussian random variable with variance
2
o°.
Example 1 (Rademacher). If a random variable X € {—1,+41} with the equal probability 1/2 for —1 and

1, then X is sub-Gaussian(1?).

2 Reading: Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Section 2.1
3 Reading: Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Section 2
4 Reading: John Duchi’s Lecture Notes, Section 3.1 https://web.stanford.edu/class/stats311/lecture-notes.pdf


https://web.stanford.edu/class/stats311/lecture-notes.pdf

Proof For all A\, we have
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Example 2 (Bounded RV). If a random variable X € [a, b] with probability 1, then X is sub-Gaussian((b—
a)?).
Proof We prove this by a symmetrization argument. Let ¢ € {—1,+1} be a random variable with equal
probability 1/2 for —1 and +1, and X be an independent copy of X. Then we have E[X | = E[X] and
E MX—EX]) _ g AX-E[X])
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The first inequality follows from the Jensen’s Inequality, and the second inequality follows from the previous
example. O

The lemma below provides an equivalent characterization of a sub-Gaussian random variable in terms of
its tail probability.

Lemma 3. A variable X is sub-Gaussian(c?) if and only if for some universal constant ¢ > 0,
PX]| >t < 2¢~ 1" /7" for all t > 0. (7)

We now state the Hoeffding’s inequality for sum of independent sub-Gaussian random variables. It
generalizes the more commonly known Hoeffding’s inequality for sum of bounded random variables.

Theorem 5 (Hoeffding’s Inequality). If X;’s are independent sub-Gaussian(o?) random variables, then for

any t >0,
2
P U ;(Xz -EX;)| > t] < 2exp <M> )

i.e., Y. X; is sub-Gaussian( 0?).
i i




One consequence of Hoeffding’s Ineqaulity is

\fZX EX;)| <

with probability 1 — 4.

Definition 2. A variable X is called sub-exponential with parameters (72,b), denoted as sub-exponential(t?,b),
if
EAMXEXD < X720 for all X € R with |A| < (8)

Example 3 (Gaussian Squared). If a variable Z follows the normal distribution N(0,1) and X £ Z2, then
X is sub-exponential(2,4).
Example 4 (Bounded RV). If a variable X € [—b,b], with mean E[X] = 0 and variance var(X) = o2, then
X is sub-Gaussian((2b)?), and is also sub-exponential(652 /5, 2b).

We now state the Bernstein’s inequality for sum of independent sub-exponential random variables. It
generalizes the more commonly known Bernstein’s inequality for sum of bounded random variables.

@m—

Theorem 6 (Bernstein’s Inequality). If X;’s are independent sub-ezponential(c?,b;) random variables with
E[X;] =0, then for any t > 0,
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