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In this lecture,1 we will introduce kernel methods and random features. Kernel method is one of the most
important ideas in the history of machine learning. Even these days kernel method still performs very well
on certain tasks. On the theory side, a lot of efforts have been devoted to understand the connection between
deep learning and kernel method (e.g. neural tangent kernel). However, it is well known that original kernel
method suffers from scalability issue. It requires a lot of computation and storage. Random feature is a very
clever idea to get around this scalability issue. We will also apply matrix Bernstein’s inequality to provide
error bounds.

1 Notation

A quick summary of the notation.
For a vector u ∈ Rd, we use ‖u‖2 to denote its `2 norm. For a matrix A ∈ Rd1×d2 , we use ‖A‖F to denote

its Frobenius norm and ‖A‖op its operator/spectral norm (i.e., the largest singular value of A).
If A is a d × d symmetric matrix and its eigenvalues are sorting as λ1 ≥ λ2 ≥ . . . λd, then we denote

λi(A) be the i-th largest eigenvalue of A, namely λi(A) = λi.
For two d × d symmetric matrices A,B, the positive-semidefinite ordering A � B means that A − B

is positive-semidefinite matrix, i.e., λi(A − B) ≥ 0,∀i. Note that A � B implies that λi(A) ≥ λi(B) for
i = 1, . . . , d.

2 Motivations: Ridge Regression and Kernelization

A simple example of kernel method is given by ridge regression. Consider the linear regression setting. For
a feature matrix X ∈ RN×d, we denote the ith row as xi, which is the feature vector for the ith data point.
Denote y ∈ RN as the response vector. To fit a linear model between X and y, ridge regression solves the
optimization problem

β̂ = arg min
β∈Rd

‖y −Xβ‖22 + λ‖β‖22,

= (X>X + λId×d)
−1X>y,

= X>(XX> + λIN×N )−1y.

(1)

The last identity is called the “dual form” of ridge regression solution, and can be proved by SVD or
Woodbury inversion lemma. Given a new data point x0 ∈ Rd, our prediction for y0 is

ŷ0 = x>0 β̂ = x>0 X
> (XX> + λIN×N )−1y︸ ︷︷ ︸

:=α̂∈RN

,

=

N∑
i=1

α̂i〈x0, xi〉.
(2)

1Reading:

• Section 6.5 in Tropp, An Introduction to Matrix Concentration Inequalities, https://arxiv.org/abs/1501.01571.

• Also relevant: Ali Rahimi, Benjamin Recht, Random Features for Large-Scale Kernel Machines, NeurIPS 2007, https:
//people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf;

• Also relevant: Fanghui Liu, Xiaolin Huang, Yudong Chen, Johan Suykens, Random Features for Kernel Approximation:
A Survey on Algorithms, Theory, and Beyond, T-PAMI 2022, https://arxiv.org/abs/2004.11154.
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Remark Because (XX>)ij = 〈xi, xj〉, an important observation here is that the prediction ŷ0 only
depends on inner products between data points.

The idea of kernel method is to replace every inner product 〈xi, xj〉 by some nonlinear function Φ(xi, xj),
where Φ : Rd ×Rd → R is a user-specified kernel. This is called the “kernel trick”. The function Φ can also
be interpreted as some nonlinear similarity measure between xi and xj . In this way, we can extend ridge
regression to the nonlinear setting also known as “kernel ridge regression”. The same idea also applies to
Support Vector Machine (SVM), PCA and beyond.

3 Kernels: Properties and Examples

In the following, we impose some assumptions on our kernel function Φ:

1. Φ(x, x) = 1 for all x ∈ Rd,

2. Φ(x, y) ∈ [−1, 1] for all x, y ∈ Rd,

3. Φ(x, y) = Φ(y, x).

Example 1 (Angular Kernel).

Φ(x, y) =
2

π
arcsin

〈x, y〉
‖x‖2‖y‖2

= 1− 2∠(x, y)

π
. (3)

This is also known as the “arc-cosine kernel”. It is one example of the rotation-invariant kernels, since it
only depends on the angle between two data points.

Example 2 (Gaussian/Radial Basis Function(RBF) Kernel).

Φ(x, y) = e−α‖x−y‖
2
2/2. (4)

Gaussian kernel is one example of the shift-invariant kernel. A kernel is shift-invariant if it only depends on
the difference of the two points, that is Φ(x, y) = ϕ(x− y) for some function ϕ.

Definition 1 (Kernel Matrix). Given N data points x1, . . . , xN ∈ Rd, the kernel matrix G ∈ RN×N is
Gij = Φ(xi, xj) for i, j = 1, . . . , N .

A kernel Φ is called positive semidefinite (p.s.d.) if G is p.s.d. for any finite dataset {xi}Ni=1. We can
verify that both Gaussian kernel and Angular kernel are p.s.d.

Given a kernel Φ, we can “kernelize” ridge regression by replacing every inner product 〈xi, xj〉 in the
prediction rule (2) by Φ(xi, xj). Doing so leads to the kernel ridge regression prediction rule:

ŷ0 =

N∑
i=1

α̂iΦ(x0, xi), where α̂ = (G+ λIN×N )−1y ∈ RN .

To use the kernel method, we need to construct the N×N kernel matrix G. It takes N2 storage and requires
O(dN2) operations to compute, which is very challenging when N is large. To get around with this, we want
to find approximation of G. This is where the random features idea comes in.
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4 Random Features

The idea was proposed in a paper in 2007 by Ali Rahimi and Benjamin Recht, both of them were at UW-
Madison at that time. The paper is one of the most influential papers of NeurIPS and won the Test-of-Time
Award by NeuIPS in 2017.

Assume there exists a scalar random variable w ∈ W (with distribution µ) and a feature map function
ψ : R×W → R such that

Φ(x, y) = Ew∼µ [ψ(x;w)ψ(y;w)] . (5)

This assumption is also called the “reproducing property”.

Example 3 (Angular). For Angular kernel, we have

Φ(x, y) = 1− 2∠(x, y)

π
= Ew

 ψ(x;w)︷ ︸︸ ︷
sgn(〈x,w〉) sgn(〈y, w〉)


︸ ︷︷ ︸

“Grothendieck identity”
Proof by elementary geometry

, (6)

where w ∼ µ = uniform over unit sphere in Rd.

For shift-invariant kernel, we have the following classical theorem:

Theorem 4 (Bochner’s Theorem). A continuous shift-invariant kernel Φ(x, y) = ϕ(x− y) on Rd is positive
definite if and only if ϕ(·) is the Fourier transform of a positive finite measure.

Example 5 (Gaussian Kernel). For Gaussian kernel, we have

ψ(x;w1, w2) =
√

2 cos(〈x,w1〉+ w2), (7)

where w1 ∼ N (0, αId×d), w2 ∼ Unif(0, 2π).

Define the random feature vector Z to be

Z =

 z1
...
zN

 =

 ψ (x1;ω)
...

ψ (xN ;ω)

 ∈ RN .

Then R := ZZ> is a rank-1 unbiased estimate of the kernel matrix G, since G = Ew
[
ZZ>

]
. To approximate

the kernel matrix G by random features, we generate n independent copies of R:

R1, . . . , Rn ∈ RN×N .

Then our estimator of G is given by

Ĝ :=
1

n

n∑
`=1

R`. (8)

Ĝ is an rank-n approximation of G ∈ RN×N . To generate a copy of Z, we need O(Nd) operations. So in
total it needs O(nNd) operations to generate all n copies. A question of interest is how large n, the number
of random features, needs to be to guarantee a reasonable approximation.
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5 Approximation Guarantees

For the following, we focus on Angular Kernel with

ψ(x;w) = sgn(〈x,w〉).

We would like to bound ∥∥∥∥∥
n∑
l=1

[(
1

n
R`

)
− E

(
1

n
R`

)]∥∥∥∥∥
op

by matrix Bernstein inequality.
Note that

1.
∥∥ 1
nR`

∥∥
op

= 1
n‖Z`‖

2
2 = N

n , since every entry of Z` is either 1 or −1. We have∥∥∥∥ 1

n
R` − E

(
1

n
R`

)∥∥∥∥
op

≤
∥∥∥∥ 1

n
R`

∥∥∥∥+

∥∥∥∥E( 1

n
R`

)∥∥∥∥ ,
≤
∥∥∥∥ 1

n
R`

∥∥∥∥+ E
∥∥∥∥ 1

n
R`

∥∥∥∥ (Jensen) ,

=
2N

n
=: b.

2. E
[
R2
`

]
= E

[
Z`Z

>
` Z`Z

>
`

]
= NE

[
Z`Z

>
`

]
= NG. It yields that∥∥∥∥∥ 1

n2

n∑
`=1

E
[
(R` − ER`)2

]∥∥∥∥∥
op

≤

∥∥∥∥∥ 1

n2

n∑
`=1

E
[
R2
`

]∥∥∥∥∥
op

=
N

n
‖G‖op =: σ2.

To prove the first inequality above, observe that

0
(i)

�
n∑
`=1

E
[
(R` − ER`)2

]
,

=

n∑
`=1

(
E
[
R2
`

]
− (E [R`])

2
)
,

(ii)

�
n∑
`=1

E
[
R2
`

]
,

where step (i) holds because the sum of the expectations of p.s.d. matrices is p.s.d, and step (ii) holds

because the matrix (E [R`])
2

is p.s.d. It follows that∥∥∥∥∥ 1

n2

n∑
`=1

E
[
(R` − ER`)2

]∥∥∥∥∥
op

,

=
1

n2
λ1

(
n∑
`=1

E
[
(R` − ER`)2

])
,

≤ 1

n2
λ1

(
n∑
`=1

E
[
R2
`

])

=

∥∥∥∥∥ 1

n2

n∑
`=1

E
[
R2
`

]∥∥∥∥∥
op

.
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Applying (the user-friendly form of) matrix Bernstein inequality, we have that w.h.p.

‖Ĝ−G‖op .
√
σ2 logN + b logN,

.

√
N

n
‖G‖op logN +

N

n
logN. (*)

To better understand the sample complexity, we introduce the definition of matrix intrinsic dimension
as follows.

Definition 2 (Intrinsic dimension). Denote the intrinsic dimension of a p.s.d. matrix G as intdim(G),
defined as

intdim(G) :=
trG

‖G‖op
=

∑
i λi(G)

λ1(G)
= stable-rank(G1/2).

This can be thought of as a robust version of matrix rank.
For a kernel matrix G ∈ RN×N , the diagonal entries are always 1, so

intdim(G) =

∑
iGii
‖G‖op

=
N

‖G‖op
.

For each ε ∈ (0, 1), the bound (*) implies that if n & intdim(G) logN
ε2 , then

‖Ĝ−G‖op
‖G‖op 6 ε+ ε2 6 2ε. Thus,

random features method gives good approximation using small n when G is (approximately) low-rank, i.e.,
intdim(G)� N .

Remark The bound (*) controls the approximation error of the kernel. In practice, we often care about
the prediction error for a new test data point. An important problem of studying random features is: what
is the relation between the approximation error and the prediction error? Some experiments show that they
are not necessarily proportional to each other.
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