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Lecture 6: Spectral Algorithms I
Lecturer: Yudong Chen Scribe: Nayoung Lee

In this lecture,1 we will introduce the singular perturbation theory. Previously, we mainly focused on the
operator or Frobenius norm of the difference in the estimated matrix and the true matrix. This lecture will
focus on the singular values/vectors of the estimator and the true matrix. We first begin with a motivating
example where a small perturbation in the matrix can lead to a big difference in the singular vector of the
matrix and show that a gap in the singular values are needed for stability. Then we introduce a new metric,
the subspace distance, and two theorems — the Wedin’s sin Θ theorem and the Weyl Inequality. We apply
the two theorem in a simple case of the matrix completion problem.

1 Notation

A quick summary of the notation.

• For a matrix A ∈ Rd1×d2 , we use ‖A‖F to denote its Frobenius norm and ‖A‖op its operator/spectral
norm (i.e., the largest singular value of A).

• σi(A) is the i-th largest singular value of matrix A.

• col(A) denotes the column space of the given matrix A.

2 Recap

In previous lectures, we covered spectral algorithms for two problems: (i) low-rank matrix completion and
(ii) non-parametric Bradley-Terry model. We followed the following setup where given a (noisy/partial)

observation Y of some unknown matrix Y ∗, our goal is to find an good estimator Ŷ of Y ∗.

Y ∗ −→ Y −→ Ŷ
unknown observation estimator

We derived bounds on the error of estimating Y ∗, in terms of ‖Ŷ − Y ∗‖op and/or ‖Ŷ − Y ∗‖F . However,
sometimes the row/column spaces and the eigen/singular vectors of Y ∗ are of interest rather than the matrix
Y ∗ itself.

3 Motivating Examples

Example 1 (Bradley-Terry Model).

An estimate of true ranking can be extracted from eigenvector of Ŷ (will be covered in next lecture)

1Reading:

• Rank centrality: Ranking from pairwise comparisons, S. Negahban, S. Oh, D. Shah, Operations Research, 2016. https:
//arxiv.org/abs/1209.1688

• Spectral method and regularized MLE are both optimal for top-K ranking, Yuxin Chen, Jianqing Fan, Cong Ma, Kaizheng
Wang, Annals of Statistics, 2019. https://arxiv.org/abs/1707.09971

• Lecture Notes for ELE 520, Yuxin Chen, Princeton University.
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Example 2 (Spectral Initialization for Non-convex Matrix Completion2).
Suppose that the spectral estimator and true matrix have rank-r singular value decomposition Y ∗ =

U∗Σ∗V ∗> and Ŷ = ÛΣ̂V̂ >. Let

F0 = ÛΣ̂1/2, F ∗ = U∗Σ∗1/2,

G0 = V̂ Σ̂1/2, G∗ = V ∗Σ∗1/2,

where F̂ , Ĝ,F ∗,G∗ ∈ Rn×r. Then the estimator and true matrix can be written in the factorized form
Ŷ = F̂ Ĝ> and Y ∗ = F ∗G∗>.

The matrices F̂ , Ĝ, given by the singular values/vectors of the spectral estimator, are often used as an
initial solution for gradient descent method applied to the non-convex formulation:

min
F ,G∈Rd×r

∑
(i,j) observed

((
FG>

)
i,j
− Y ∗ij

)2
.

We want to show that F̂ , Ĝ is close to F ∗,G∗, so they are in a local convex region of the above (globally
nonconvex) objective function. In this region, one may use standard arguments from convex optimization to
show that converges to the true F ∗,G∗.

The question is:

If Ŷ ≈ Y ∗, then do we have F̂ ≈ F ∗ and Ĝ ≈ G∗?

We will return to this example at the end of the lecture.

Remark (Comparison with spectral algorithm)
Recall our previous error bound for spectral algorithm:

1

n2
‖Ŷ − Y ∗‖2F ≤

r log n

pn
.

Even when p is close to 1, in which case most entries are observed, the bound above gives a non-zero error.
The non-convex formulation can be viewed as a refinement of the spectral estimator; when p is sufficiently
large, this formulation can achieve exact recovery of Y ∗ (under appropriate conditions).

4 Singular Perturbation Theory

Let M ∈ Rn1×n2 be the original matrix, and M̂ = M + H be the perturbed matrix, where H is the
perturbation or noise. Assume n1 ≥ n2. The singular value decomposition (SVD) of M and M̂ is given by,

M =
[
U0 U1

] Σ0 0
0 Σ1

0 0

[V >0
V >1

]
,

M̂ =
[
Û0 Û1

] Σ̂0 0

0 Σ̂1

0 0

[V̂ >0
V̂ >1

]
,

(1)

where
2

• Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation, Yudong Chen and Yuejie Chi. IEEE
Signal Processing Magazine, vol. 35, no. 4, pp. 14-31, 2018. https://arxiv.org/abs/1802.08397

• Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview, Yuejie Chi, Yue M. Lu, Yuxin Chen.
IEEE Transactions on Signal Processing, vol. 67, no. 20, pp. 5239 -5269, 2019. https://arxiv.org/abs/1809.09573
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• U0 ∈ Rn1×r,Σ0 ∈ Rr×r,V0 ∈ Rn2×r correspond to the top-r singular values/vectors of M ;

• Û0 ∈ Rn1×r, Σ̂0 ∈ Rr×r, V̂0 ∈ Rn2×r correspond to the top-r singular values/vectors of M̂ ;

• similarly, U1 ∈ Rn1×(n1−r),Σ1 ∈ R(n2−r)×(n2−r),V1 ∈ Rn2×(n2−r) correspond to the bottom singular
values/vectors of M ;

• Û1 ∈ Rn1×(n1−r), Σ̂1 ∈ R(n2−r)×(n2−r), V̂1 ∈ Rn2×(n2−r) correspond to the bottom singular val-
ues/vectors of M̂ .

Example 3. Consider two matrices M and M̂ , where M − M̂ is small:

M =

[
1 0
0 1 + ε

]
=

[
1 0
0 1

] [
1 + ε 0

0 1

] [
1 0
0 1

]
,

M̂ =

[
1 ε
ε 1

]
=

(
1√
2

[
1 1
1 −1

])[
1 + ε 0

0 1− ε

](
1√
2

[
1 1
1 −1

])
.

We consider two cases:

• Setting I: r = 1
In this case, U0 and Û0 ∈ R2×1 correspond to the top-1 left singular vectors of M and M̂ , respectively.
Although M − M̂ is small, their top left singular vectors are very different:

U0 =

[
1
0

]
and Û0 =

1√
2

[
1
1

]
.

This is an example where a small perturbation can significantly change the singular vectors of a matrix.
Reason: σ1(M) = σ2(M). For stability, a gap in singular values σ1(M)− σ2(M) & ε is needed.

• Setting II: r = 2
In this case, U0 and Û0 ∈ R2×2 correspond to the top-2 singular vectors of M and M̂ , respectively.
We see that U0 and Û0 are very different:

U0 =

[
1 0
0 1

]
and Û0 =

1√
2

[
1 1
1 −1

]
.

However, col(U0) = col(Û0); that is, the columns of U0 and Û0 span the the same vector space R2,
although they have different basis representation.

Setting II above shows that ‖Û0 − U0‖F or ‖Û0 − U0‖op is not the right choice of metric. Instead, we
use the following subspace distance metric.

Definition 1 (Subspace Distance). The subspace distance between U0 and Û0 given in (1) is defined as

dist(Û0,U0) , ‖Û0Û
>
0 −U0U

>
0 ‖op

= ‖Û>0 U1‖op = ‖U>0 Û1‖op
= max{| sin θ1|, · · · , | sin θr|},

where
θi , i-th principal angle between col(U0) and col(Û0).

Some remarks:

• dist(Û0,U0) ∈ [0, 1].

• Û0Û
>
0 and U0U

>
0 are the projection matrices onto col(Û0) and col(U0), respectively.
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• When r = 1 (so Û0,U0 ∈ Rn), we have

θ1 = arccos(Û>0 U0) = ∠(Û0,U0),

(sin θ1)2 = 1− (cos θ1)2 = 1− (Û>0 U0)2 = (Û>0 U1)2.

• For the proof of the equalities in Definition 1, see, e.g., Part 2 of Theorem I.5.5 in G. W. Stewart and
Ji guang Sun (1990), Matrix Perturbation Theory, Academic Press, Boston.

• Technicality: one needs to be a bit careful with the relationship between r and n − r, since at most
k := min{r, n − r} of the principal angles are nonzero (equivalently, one may define only the first k
principal angles, as done in Stewart and Sun’s book.)

4.1 Wedin’s sin Θ Theorem and Weyl Inequality

Recall that M̂ = M + H. For the singular vectors, we have Wedin’s sin Θ Theorem.

Theorem 4 (Wedin’s sin Θ Theorem).

Suppose σr(M)− σr+1(M̂) ≥ ∆ > 0. Then the following inequality holds:

max{dist(Û0,U0),dist(V̂0,V0)} ≤ max{‖HV0‖op, ‖H>U0‖op}
∆

≤ ‖H‖op
∆

.

The second inequality above follows from ‖HV0‖op ≤ ‖H‖op‖V0‖op = ‖H‖op. Note that the above
bound is useful only when the right hand side is less than 1.

For the singular values we have Weyl’s Inequality.

Theorem 5 (Weyl’s Inequality).
We have

|σi(M)− σi(M̂)| ≤ ‖H‖op, ∀i = 1, 2, . . . , n.

Consequently
σr(M)− σr+1(M̂) ≥ σr(M)− σr+1(M)− ‖H‖op.

Combining the above two theorems, we have:

Corollary 1.
The following inequality holds, given that the denominator is positive:

max{dist(Û0,M0),dist(V̂0,V0)} ≤ ‖H‖op
σr(M)− σr+1(M̂)− ‖H‖op

.

Note that the inequality is valid even if σ1(M) = σ2(M) = · · · = σr(M) — only the gap between the
r-th and (r+ 1)-th singular value is required. The perturbation may change the ordering of these r singular
values, but it does not matter since we are using a distance metric in the column space.

Remark
Similar bounds for eigenvectors of symmetric matrices are given in the Davis-Kahan sinΘ Theorem.

4



4.2 Application: Matrix Completion

Suppose Y ∗ ∈ Rn×n is rank r with SVD Y ∗ = UΣV >, where Σ = diag(σ1, · · · , σr),U ,V ∈ Rn×r. From

Lecture 1, the spectral algorithm gives a rank-r estimator Ŷ bound on ‖Ŷ − Y ∗‖op.

Now, suppose Ŷ has SVD Ŷ = ÛΣ̂V̂ >, where Û , V̂ ∈ Rn×r. Then the following can be derived.

• Apply Theorem 4 to bound ‖Σ̂−Σ‖op.

• Apply Corollary 1 to get bounds on dist(Û ,U),dist(V̂ ,V ).

• We can then use F̂ , ÛΣ̂1/2 and Ĝ0 , V̂ Σ̂1/2 at the initial solution for gradient descent for the
non-convex formulation in Example 2.

A simple case (rank r = 1):
Suppose Y = uv> where u,v ∈ Rn, u = 1

‖ũ‖2 ũ, v = 1
‖ṽ‖2 ṽ, ũ, ṽ ∼ N (0, In×n). Let the rank-1 estimator

Ŷ = σ̂ûv̂> be obtained by the spectral algorithm.

Lemma 1.
If the sampling probability satisfies p ≥ C log3 n

n for a sufficiently large constant C, then w.h.p.,

dist(û,u) ≤ 1

100
, dist(v̂,v) ≤ 1

100
, |σ̂ − 1| ≤ 1

100
.

Sketch of Proof

1. Show ‖ũ‖22 � ‖ṽ‖22 � n w.h.p. by scalar Bernstein’s inequality

2. Show maxi |ũi| .
√

log n,maxj |ṽj | .
√

log n w.h.p by bounding each |ũi| and applying a union bound.

3. Bound maxi,j |Y ∗ij | by combining 1 and 2.

4. Bound ‖Ŷ − Y ∗‖op (similar to Lecture 1, using matrix Bernstein - Hint: Matrix Bernstein require
boundedness, ensured by 3.)

5. Bound dist(û,u),dist(v̂,v) by Corollary 1.
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