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In the last lecture, we introduced the singular perturbation theory and its application. In this lecture,1

we will introduce eigen perturbation theorem for probability transition matrix and discuss its application to
the parametric Bradley Terry model.

1 Parametric Bradley-Terry Model

In this section we recall the parametric Bradley-Terry Model.
Suppose we have n items to be ranked, and wi denote the score for item i, where wi > 0,∀i. We have:

• item i is better than item j ⇐⇒ wi > wj .

• P{item i beats item j} = wi
wi+wj

.

We observe the matrix Y ∈ {0, 1}n×n, where

Yij =

{
1 with probability

wj
wi+wj

0 with probability wi
wi+wj

Our goal is to estimate w1, . . . , wn given Y . (Note that multiplying all wi’s by the same constant does not
change the probabilities above, so we can only hope to estimate wi’s up to a global scaling.)

Remark This model can be extended to partial observation setting: we observe Yij for a subset of all
(i, j)’s.

Remark The Bradley-Terry model is closely related to the ELO rating systems used in many areas, such
as Chess, Go, WOW, TopCoder, College Football, and so on.

2 Spectral Algorithm

In this section we apply spectral algorithm to this problem.
Consider a Markov Chain with state space {1, 2, . . . , n} and probability transition matrix P̂ ∈ [0, 1]n×n,

where

P̂ij =

{
1
2nYij i 6= j
1−

∑
l:l 6=i

1
2nYil i = j

(1)

1Reading:

• ”Rank centrality: ranking from pairwise comparisons,” S. Negahban, S. Oh, D. Shah, Operations Research, 2016.
https://arxiv.org/abs/1209.1688

• ”Spectral method and regularized MLE are both optimal for top-K ranking,” Yuxin Chen, Jianqing Fan, Cong Ma,
Kaizheng Wang, Annals of Statistics, 2019. https://arxiv.org/abs/1707.09971

• ”Lecture Notes for ELE 520”, Yuxin Chen, Princeton University.
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We then compute stationary distribution π̂, i.e., the top left eigenvector of P̂ such that

π̂ = π̂P̂ .

Remark Practical rating systems can often be viewed as dynamic/online algorithms for computing this
eigen vector. For example, one may approximately compute the stationary distribution of P̂ by simulating
the Markov chain P̂ ; this idea is closely related to Google’s PageRank algorithm.

Remark Note that P̂ defined above satisfies Pii ≥ 1/2,∀i. This is called a lazy Markov chain.2

Define the population probability transition matrix P ∈ [0, 1]n×n, whose (i, j) entry is

Pij := E[P̂ij ] =

{
1
2n

wj
wi+wj

i 6= j

1−
∑
`: 6̀=i

1
2n

w`
wi+w`

i = j
. (2)

We observe that P satisfies the “detailed balance equation”:

wiPij = wjPji ∀i, j

In this case, it is easy to verify that w after normalization is the stationary distribution of P , i.e., the
distribution

π ,
1∑
i wi

w

satisfies π = πP .
Since P = E[P̂ ], intuitively we expect that their stationary distributions, π and π̂, are close to each other.

To make this intuition precise, we want to bound P̂ − P and π̂ − π.
Note that the matrices P and P̂ defined above are asymmetric in general.

2.1 Aside: Uniqueness of Stationary Distribution

One thing we need to consider is whether such the stationary distribution π is unique or not. In general,
the stationary distribution might not be unique even when the detailed balance equation is satisfied. One
example is when P is the identity matrix, in which case detailed balance equation wiPij = wjPji holds for
any w ∈ Rn, hence any distribution is stationary for this P .

The stationary distribution is unique if we assume the finite Markov chain P is irreducible, meaning that
every state can be reached from every other state in a finite number of steps. We give the definition below.

Definition 1 (Irreducible Markov Chain). A Markov chain with probability transition matrix P is irreducible
if for all i, j, there exists a t > 0 such that (P t)ij > 0.

Consider Parametric Bradley-Terry Model and recall the construction of population probability transition
matrix P in equation (2). Since wi > 0,∀i by assumption, P is irreducible (and aperiodic, since the
underlying graph is connected with self-loops). On the other hand, to ensure the spectral algorithm is
always well-defined, we need to argue that the empirical transition matrix P̂ is also irreducible. To this
end, one may add some regularization when constructing P̂ ; see Section 3.3 in the Negahban-Oh-Shah 2016
paper for details. Alternatively, one may argue that P̂ is irreducible provided that P has a sufficiently large
eigen gap and P̂ −P is small (which holds with high probability under our probabilistic model, as shown in
Section 4).

All the results in the following sections hold when the relevant Markov chains have unique stationary
distribution.

2A lazy reversible Markov chain P has non-negative eigenvalues, since one can write P = 1
2
(Q+ I) for some other reversible

Markov chain Q and λi(Q) ≥ −1, ∀i by Perron-Frobenius theorem. Note that any Markov chain can be made lazy without
substantially reducing its eigen gap or increasing its mixing time.
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3 Eigen Perturbation Theory for Probability Transition Matrices

Developing a eigen perturbation theory for general asymmetric matrices is challenging:

1. Eigen values and eigen vectors may be complex valued.

2. Eigen vectors may not be orthogonal.

3. There is no simple relationship between singular values and eigen values.

In this section, we focus on a special class of asymmetric matrices: Probability Transition Matrices. We
consider the following setting:

• A Markov Chain {Xt, t = 0, 1, . . .} with n states (items).

• Transition probability from i to j: Pij = P {Xt+1 = j | Xt = i}.

• Note that P is a (row-)stochastic matrix:
∑
j Pij = 1,∀i.

• There exists a stationary distribution π = πP .

• We assume that P is reversible with respect to π, meaning that P and π satisfy the detailed balance
equation πiPij = πjPji ∀i, j. In this setting, all the eigenvalues of P are real.3

Given nonnegative vector π, we define two norms below:

Definition 2 (Weighted `2 norm). For a vector a, ‖a‖π ,
√
π1a21 + · · ·+ πna2n.

Definition 3 (Induced matrix norm). For a matrix A, ‖A‖π , sup‖x‖π=1

∥∥x>A∥∥
π
.

Theorem 1. Suppose that P and P̂ are probability transition matrices with stationary distributions π and
π̂, respectively, and that P is reversible. Then:

‖π̂ − π‖π 6
‖π(P̂ − P )‖π

1−max {λ2(P ),−λn(P )}︸ ︷︷ ︸
spectral gap

−‖P̂ − P‖π︸ ︷︷ ︸
perturbation

assuming the denominator is strictly positive.

4 Application to Parametric Bradley-Terry Model

This section we apply the previous theorem into Parametric Bradley-Terry Model. To keep things simple,
we assume all the scores are on the same order: maxi,j

wi
wj

6 C for a universal constant C > 0.4 Then we

can verify:

1. The distribution π is similar to the uniform distribution up to a constant: πi � 1
n ,∀i. (This notation

means c1
1
n ≤ πi ≤ c2

1
n for universal constants c1, c2 > 0.)

2. The π-weighted norm and the induced matrix norm are similar to the usual `2 and spectral norm,
respectively: ‖a‖π � 1

n‖a‖2,∀a ∈ Rn and ‖A‖π � ‖A‖op,∀A ∈ Rn×n.

3. The transition of the population Markov chain is nearly uniform up to a constant:

Pij ,
1

2n

wj
wi + wj

� 1

n
∀i 6= j (3)

3Proof: Let D be the diagonal matrix with Dii =
√
πi for each i. Under the reversibility assumption, one may verify that

the matrix D−1PD is symmetric and hence has real eigenvalues. This implies that P also has real eigenvalues.
4This assumption can be relaxed; see the Chen-Fan-Ma-Wang 2019 paper.
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From Markov chain theory and the property (3) above, we can show that P has an eigen gap bounded away
from zero:

1−max {λ2(P ),−λn(P )} > c > 0 (4)

for some universal constant c.5

We further observe that the matrix P̂ − P has independent entries bounded by 1
n . Apply the matrix

Bernstein’s Inequality (similar to lecture 1), we have with high probability:

‖P̂ − P‖π � ‖P̂ − P‖op .
1

n

√
n log n (5)

Plugging the bounds (4) and (5) into Theorem 1, and using the inequality ‖π(P̂−P )‖π ≤ ‖π‖π‖(P̂−P )‖π,
we have (for sufficiently large n and with high probability)

‖π̂ − π‖π .
‖π‖π 1

n

√
n log n

c−O( 1
n

√
n log n)

.

√
log n

n
‖π‖π.

Consequently, the relative error satisfies

‖π̂ − π‖2
‖π‖2

� ‖π̂ − π‖π
‖π‖π

.

√
log n

n
−→ 0

as n −→∞.

Exercise: Generalize the above results to the partial observation setting, where each entry of Y is observed
with probability p ∈ (0, 1).

5For details see Lemma 4 in the Negahban-Oh-Shah 2016 paper.
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