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Lecture 8: Convex Relaxation for Community Detection
Lecturer: Yudong Chen Scribe: Jingqi Duan

In last few lectures, we focused on the class of spectral methods. Starting from this lecture, we will discuss
another class of methods, namely convex relaxation.1

1 Convex Relaxation Methods

ML/STAT Model −→ (Hard) optimization problem −→ convex program

true parameter θ∗ min f(θ) s.t. θ ∈ C min f̄(θ) s.t. θ ∈ C̄

Suppose that we want to estimate some machine learning or statistical model parameterized by some unknown
ground truth parameter θ∗. To estimate this true θ∗, we may construct some optimization problem in which
we minimize or maximize an objective function f (such as training loss and likelihood) subject to the
constraint θ ∈ C. Many problems involve the nonconvex optimization, which is in general computationally
hard to solve. Convex relaxation methods aim to address this computational challenge by building a convex
surrogate of the original optimization problem. Convex optimization problems can often be solved efficiently,
and the hope is that the solution obtained is a good estimator of θ∗.

2 Community Detection

We will consider the community detection problem (a.k.a. graph clustering), for which convex relaxation
is very powerful. Given a network of n nodes, the high level goal of community detection is to partition
nodes into clusters such that there are (1) many connections within clusters and (2) few connections across
clusters. That is, we would like to detect community structure in the network.

2.1 Stochastic Block Model (a.k.a. Planted Partition Model)

The Stochastic Block Model (SBM) is a popular probabilistic model for studying community detection. It
assumes that the observe graph is generated randomly from some underlying unknown communities.

Specifically, we assume that n nodes are partitioned into k unknown equal-sized clusters, each containing
n
k nodes. An edge is placed between node i and j with probability p if i, j are in the same cluster, and with
probability q if they are in different clusters. We assume that p > q, so on average there are more edges
within the cluster than across clusters. The resulting random graph can be represented by an adjacency
matrix A ∈ {0, 1}n×n, with the distribution

Aij ∼

{
Bernoulli(p) if i, j in the same cluster

Bernoulli(q) if i, j in different clusters

independently across all i 6= j. We may encode the true clusters by a “cluster matrix” Y ∗ ∈ {0, 1}n×n, where

Y ∗ij =

{
1 if i, j in the same cluster

0 if i, j in different clusters.

1Reading:

• Original paper: [2]

• Improvement: [1]
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Note that Y ∗ is a binary, block-diagonal matrix with k blocks; when k = 2, Y ∗ looks like
1 0
0 1

(after

appropriately permuting the rows and columns.)
The goal is to estimate true clusters Y ∗ given the observed graph A.

2.2 SDP Relaxation

Assume that p and q are known (which can be relaxed). We want to find a matrix Y that is maximally
correlated with the observed graph A and has the same block-diagional structure as Y ∗. Specifically, we try
to solve the following optimization problem

max
Y ∈Rn×n

〈
A− p+ q

2
, Y

〉
=
∑
i,j

(
Aij −

p+ q

2

)
Yij (1)

s.t. Yij ∈ {0, 1},∀i, j
Yii = 1,∀i∑

j

Yij = n/k, ∀i

rank(Y ) = k

What is the rationale for considering this optimization problem? The expectation of the quantity A− p+q
2 ,

which appears in the objective function, is a block matrix of the form EA− p+q
2 =

p−q
2 −p−q

2

−p−q
2

p−q
2

, which

has the property {
Y ∗ij = 1 when

(
EA− p+q

2

)
ij
> 0,

Y ∗ij = 0 when
(
EA− p+q

2

)
ij
< 0.

It is then easy to see that if we were to replace A by EA in the optimization problem (1), then Y ∗ would
be the unique optimal solution. Therefore, it is reasonable to expect that the optimal solution to the actual
optimization problem (1) is a good estimator of Y ∗.

However, the optimization problem in (1) is computationally hard to solve due to the nonconvex con-
straints (the objective function is linear). We may consider a convex relaxation of (1) by replacing nonconvex
constraints with convex ones. One such convex relaxations is

Ŷ = max
Y

〈
A− p+ q

2
, Y

〉
(2)

s.t. 0 ≤ Yij ≤ 1, ∀i, j
Yii = 1, ∀i
Y � 0.

Note that all feasible solutions to the problem in (1) is also feasible to the convex problem (2); in particular,
Y ∗ is feasible to (2). We remark that the convex problem (2) is a semidefinite program (SDP), which can
be solved in polynomial time.

Next, we study whether the convex relaxation solution Ŷ is a good estimator of Y ∗. We would like to
bound the quantity ∥∥∥Ŷ − Y ∗∥∥∥

1

∆
=
∑
ij

∣∣∣Ŷij − Y ∗ij∣∣∣ , (3)

which is the element-wise `1 distance between Ŷ and Y ∗.
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2.3 Explicit Clustering When k = 2

In many cases, besides considering whether the matrix Ŷ is close to Y ∗, we are also interested in estimating
the clusters themselves. We would like to extract from Ŷ explicit clustering, which are hopefully close to
the true clusters. The spectral algorithm is one way to extract clusters from Ŷ .

Algorithm Here we focus on the special case with k = 2 clusters. Recall that Ŷ is the optimal solution
to the SDP. Compute the top singular vector û of the matrix Ŷ − 1

2 . For each node i, assign i to cluster 1 if
ûi > 0, and to cluster 2 otherwise.2

Our goal is to show these clusters are close to true clusters. In particular, we would to bound the number
of nodes that are incorrectly clustered with respect to true clusters.

3 Theoretical Guarantees

We establish the following theorem, which bounds the matrix `1 error.

Theorem 1 ([2]). If p ≥ 1
n , then with probability ≥ 1− 2( 2

e )n, we have

1

n2

∥∥∥Ŷ − Y ∗∥∥∥
1
.
√

p

(p− q)2n
. (4)

Recall that n is the number of nodes. p and q are the probability of having an edge between nodes within
the cluster and across clusters, respectively. This theorem says that the larger the gap between p and q is,
the smaller the error is. The matrix error is normalized by n2, the number of entries of Ŷ .
Remark The error bound in (4) is nontrivial when

RHS . 1

⇒ (p− q)2

p
&

1

n

⇒p & 1

n

RHS . 1. Hence, this error bound applies even when the edge probabilities are very small, all the way down
to p � 1

n .

• p � 1
n is sometimes called the sparse graph regime. Community detection is challenging in this regime:

– E[degree of each node] = O(1).
– With high probability, the graph is not connected.

• In contrast, p & log n
n is the called dense regime, which is relatively easier:

– E[degree of each node]→∞ as n→∞.
– With high probability, the graph is connected.

Many previous results on community detection only apply to the dense graph regime, especially those
on spectral methods. The spectrum of a graph is quite stable in the dense regime while not well-behaved in
the sparse regime with p � 1

n . A naive spectral method that uses the eigenvectors of the adjacency matrix
or the graph Lapacian is known to provably fail in the sparse regime.

It is remarkable that the SDP relaxation approach, without any sophisticated modification, has non-
trivial performance guarantees all the way down to the sparse graph regime. This is one example that
demonstrates the power of convex relaxation.

2To generalize to k > 2 clusters, one may take first k singular vectors to form an n× k matrix, where each row is considered
a point in Rk. Then run a clustering algorithm (e.g., the Lloyd’s k-means algorithm or Single-Linkage Hierarchical Clustering)
on these n points.
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3.1 Grothendieck’s Inequality

To prove Theorem 1, we make use of the following powerful inequality.

Theorem 2 (Grothendieck’s Inequality). For any B ∈ Rn×n, it holds that

max
ui,vj :‖ui‖2=‖vj‖2=1

∀i,j=1,...,n,

∣∣∣∣∣∣
∑
i,j

Bij 〈ui, vj〉

∣∣∣∣∣∣ ≤ K max
xi,yj∈{±1}
∀i,j=1,...,n

∣∣∣∣∣∣
∑
i,j

Bijxiyj

∣∣∣∣∣∣ , (5)

where K ≤ 1.783.

Remark The constant K is independent of B and n.

Remark LHS of (5) maximizes over infinitely many vectors; RHS maximizes over finitely many numbers.
LHS maximizes 〈B,UV >〉 over n-by-n matrices of the form UV >, which may have an arbitrary rank between
1 and n. RHS maximizes 〈B, xy>〉 over rank-one sign matrices of the form xy>.

Remark RHS is an integer program. If we further assume that ui = vi,∀i, then the LHS can be cast as
an SDP:

max
Y ∈Rn×n

∑
i,j

BijYij

s.t. Y is p.s.d.

Yii = 1,∀i

where Yij = 〈ui, uj〉 and hence Y = UUT . This SDP is sometimes called the “standard” convex relaxation
of the integer program on the RHS. Grothendieck’s inequality says that this SDP relaxation is a good
approximation.

3.2 Proof of Theorem 1

Proof
Recall that Ŷ is an optimal solution to SDP and Y ∗ is a feasible solution to SDP. Therefore,〈

A− p+ q

2
, Ŷ

〉
≥
〈
A− p+ q

2
, Y ∗

〉
⇐⇒ 0 ≥

〈
Y ∗ − Ŷ , A− p+ q

2

〉
=

〈
Y ∗ − Y,EA− p+ q

2

〉
+ 〈Y ∗ − Y,A− EA〉 (6)

Note that if nodes i, j are in the same cluster, Y ∗ij = 1 ≥ Ŷij ; if i, j are in different clusters, Y ∗ij = 0 ≤ Ŷij .

It follows that Y ∗ − Ŷ =
≥ 0 ≤ 0
≤ 0 ≥ 0

and EA− p+q
2 =

p−q
2 −p−q

2

−p−q
2

p−q
2

. In particular, the entries of these

two matrices have matching signs. Thus, we obtain that〈
Y ∗ − Y,EA− p+ q

2

〉
=
p− q

2

∑
i,j

∣∣∣Y ∗ij − Ŷij∣∣∣ =
p− q

2

∥∥∥Ŷ − Y ∗∥∥∥
1

(7)

The result in (7) involves the `1 matrix error that we would like to bound. Combining (7) with (6), we
obtain

p− q
2

∥∥∥Ŷ − Y ∗∥∥∥
1
≤
〈
Ŷ − Y ∗, A− EA

〉
. (8)
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To control the RHS in (8), we observe that〈
Ŷ − Y ∗, A− EA

〉
≤
∣∣∣〈Ŷ , A− EA

〉∣∣∣+ |〈Y ∗, A− EA〉| (by triangluar inequality)

≤ 2 max
Yii=1,∀i
Y�0

|〈Y,A− EA〉|

≤ 2K max
i,j=1,...,n
xi,yj∈{±1}

∣∣∣∣∣∣
∑
i,j

(Aij − EAij)xiyj

∣∣∣∣∣∣ . (by Grothendieck’s inequality) (9)

Note that the last RHS is a maximization over random quantities. Thanks to the Grothendieck’s in-
equality, we only need to bound the maximization over finitely many possible xi’s and yj ’s. To this end, we
can establish a high-probability upper bound for each fixed pair of (xi, yj) and then apply a union bound.

Fix an arbitrary pair (x, y) ∈ {±1}n × {±1}n. Set Zij := (Aij − EAij)xiyj and Z :=
∑

i,j Zij . The
random variables {Zij} are independent, zero-mean, and bounded by 1 in absolute value. Moreover, for all
i, j we have

Var(Zij) = Var(Aij) = p(1− p) or q(1− q) ≤ p.
Bernstein’s inequality ensures that for any t ≥ 0,

P(|Z| ≥ t) ≤ 2 exp

(
− ct2∑

i,j Var(Zij) + t

)
≤ 2 exp

(
− ct2

pn2 + t

)
.

Taking the union bound over all possible xi and yj , we obtain

P

 max
(x,y)∈{±1}n×{±1}n

∣∣∣∣∣∣
∑
i,j

(Aij − EAij)xiyj

∣∣∣∣∣∣ ≥ t
 ≤ 2 exp

(
− ct2

pn2 + t

)
4n. (10)

We would like to choose t large enough so that RHS in (10) is small. To this send, we set t = c
(√

pn3 + n
)

,

then RHS ≤ (2e)−n for a sufficiently large constant c > 0. It follows that with probability ≥ 1− (2e)−n,

max
(x,y)∈{±1}n×{±1}n

∣∣∣∣∣∣
∑
i,j

(Aij − EAij)xiyj

∣∣∣∣∣∣ .
√
pn3 + n .

√
pn3,

where the last step holds under the assumption p ≥ 1
n .

Combining the inequality above with (8) and (9), we can conclude that w.h.p.,

p− q
2

∥∥∥Ŷ − Y ∗∥∥∥
1
.
√
pn3 ⇐⇒ 1

n2

∥∥∥Ŷ − Y ∗∥∥∥
1
.
√

p

(p− q)2n
.

Remark If we define SNR := (p−q)2n
p , which measures the “signal-to-noise ratio” in the stochastic block

model, then Theorem 1 says that

1

n2

∥∥∥Ŷ − Y ∗∥∥∥
1
.

√
1

SNR
.

This bound can be improved to
1

n2

∥∥∥Ŷ − Y ∗∥∥∥
1
. e−Ω

(
SNR

)
for the same SDP relaxation [1].
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