
CS 839 Probability and Learning in High Dimension Lecture 9 - 02/23/2022

Lecture 9: Convex Relaxation for Community Detection II
Lecturer: Yudong Chen Scribe: Shuyao Li

In this lecture,1 we will introduce explicit clustering error bounds based on the `1-bound that we derived
in the last elcture. We’ll also present a simple proof of the Grothendieck’s inequality for K ≈ 1.783 based
on the angular kernel trick.

1 Explicit Clustering Error Bounds

Recall the stochastic block model with n nodes, k truth clusters represented by Y ∗, and in/cross-cluster
edge probability p and q. In the class, we considered an estimator Ŷ given by convex SDP relaxation, and
establish the following for recovering Y ∗.

Theorem 1. If p ≥ 1
n , then with probability ≥ 1− 2

(
2
e

)n
, we have

1

n2

∥∥∥Ŷ − Y ∗∥∥∥
1
.
√

p

(p− q)2n
.

Below we focus on the special case with k = 2 clusters. To extract from Ŷ an explicit estimate of the
clusters, we use the following spectral algorithm.

1. Compute the top unit norm singular vector û of Ŷ − 1
2

2. For each i, assign node i to

{
the first cluster if û∗i ≥ 0

the second cluster if û∗i < 0

We now derive the guarantee for this spectral recovering algorithm.
Let u∗ be the top unit norm singular vector of Y ∗ − 1

2 , then we have

u∗i =

{
1√
n

if i is in cluster 1

− 1√
n

otherwise

Lemma 1. If 1
n2 ‖Ŷ − Y ∗‖1 ≤ 1

20 , then

1

n
min

α∈{±1}
|{i : sgn(ûi) 6= α sgn(u∗i )}| .

1

n2
‖Ŷ − Y ∗‖1

Note that we use α to tolerate a global sign flip of singular vector. The left hand side is the fraction of
nodes that are incorrectly classified. Lemma 1 together with Theorem 1 provides an explicit upper bound
on the clustering error.
Proof WLOG assume α = 1 and sort the nodes so that u∗ = ( 1√

n
· · · 1√

n
,− 1√

n
· · · − 1√

n
)>.

1Reading:

• Analysis of SDP relaxation:[Guédon and Vershynin, 2016]

• Proof of Grothendieck’s inequality Sec 3.5–3.7 of [Vershynin, 2018]

• High-rank Grothendieck’s inequality and applications: [Montanari and Sen, 2016]

• Additional background: [Khot and Naor, 2012]
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Our strategy is to apply Wedin’s SinΘ Theorem, for which we need to compute the singular value gap
and the perturbation magnitude ‖Ŷ − Y ∗‖op.

Since Y ∗ − 1
2 is rank-1, we have σ1(Y ∗ − 1

2 ) = ‖Y ∗ − 1
2‖F = n

2
√
2

and σ2(Y ∗ − 1
2 ) = 0, so gap = n

2
√
2
.

Moreover, we have

‖Ŷ − Y ∗‖2op ≤ ‖Ŷ − Y ∗‖2F =
∑
i,j

|Ŷij − Y ∗i,j |2 ≤
∑
i,j

2|Ŷij − Y ∗ij | = 2‖Ŷ − Y ∗‖1 ≤
1

10
n2

It follows that

‖û− u∗‖2 = 2 sin(∠(û, u∗)/2)

≤ 2 sin(∠(û, u∗))

≤ 2
‖Ŷ − Y ∗‖op

gap−‖Ŷ − Y ∗‖op

.

√
‖Ŷ − Y ∗‖1
n

2
√
2
− n√

10

.

√
‖Ŷ − Y ∗‖1

n2
, (1)

where the first equality is high-school geometry and the second inequality is Wedin’s SinΘ Theorem.
To proceed, we make use of the following inequality.

Exercise 2.

‖û− u∗‖22 &
1

n
|{i : sgn(ûi) 6= sgn(u∗i )| (2)

Proof is left as exercise. Hint: sgn(ûi) 6= sgn(u∗i ) implies that |ûi − u∗i | ≥ 1√
n

.

Combining Equation (1) and (2) gives

1

n
{i : sgn(ûi) 6= sgn(u∗i )}| .

1

n2
‖Ŷ − Y ∗‖1

as claimed.

2 Comparison with Spectral Method

In the proof of Theorem 1, we showed the intermediate inequality

p− q
2

∥∥∥Ŷ − Y ∗∥∥∥
1
≤ 2max

Y �0
Yii=1

|〈Y,A− EA〉| (3)

and them control RHS by Grothendieck’s inequality, followed by a high probability bound via Bernstein’s
inequality and union bound.

Alternatively, we may use the duality between nuclear and spectral norms:

max
Y �0
Yii=1

|〈Y,A− EA〉| ≤ max
Y �0
Yii=1

‖Y ‖∗‖A− EA‖op = n‖A− EA‖op . n(
√
pn log n+ log n), (4)

where the first inequality is generalized Hölder’s inequality for nuclear and spectral norms, and the last
inequality is due to matrix Bernstein and holds with high probability. The matrix Bernstein turns out to be
not tight for controlling ‖A− EA‖op. One may use more sophisticated method to remove a

√
log n factor:

‖A− EA‖op .
√
pn+

√
log n. (5)
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However, the remaining
√

log n factor cannot be avoided, since

‖A− EA‖op ≥ max
i
‖(A− EA)i−‖2 (largest `2 norm of a row)

&
√

log n with high probability when p & 1
n .

The last inequality is left as an exercise. Note that in the sparse graph regime p � 1
n , even though the

expected degree is bounded, E
∑
j Aij = pn � 1, the maximum degree is unbounded, maxi

∑
j Aij � log n

with high probability.
Combining Equation (3), (4), and (5) gives

1

n2
‖Ŷ − Y ∗‖1 .

1

n2
n(
√
pn+

√
log n)

p− q
.
√

p

n(p− q)2
+

√
log n

n2(p− q)2
(6)

Note that the first term is the same as in Theorem 1 but the additional second term makes the bound useful
only when p &

√
logn
n , which is not sparse regime since the expected degree �

√
log n.

Note that similar analysis applies to the naive spectral method, that is, clustering based on the eigen-
vectors of the graph adjacency matrix or graph Laplacian. Note that the top eigenvector of the shifted
adjacency matrix A− p+q

2 coincides with the solution of the following convex program:

max 〈Y,A− p+ q

2
〉

s.t. Y � 0

tr(Y ) = n.

In comparsion, Theorem 1 corresponds to the following formulation:

max 〈Y,A− p+ q

2
〉

s.t. Y � 0

Yii = 1,∀i
Yij ∈ [0, 1],∀i, j.

Note that the diagonal constraint Yii = 1,∀i is significantly stronger than the trace constraint tr(Y ) = n.

3 Proof of Grothendieck’s inequality

As we have seen in the last lecture, the proof of Theorem 1 relies on the Grothendieck’s inequality.

Theorem 3 (Grothendieck’s Inequality). For any A ∈ Rn×n, it holds that

max
ui,vj :‖ui‖2=‖vj‖2=1

∣∣∣∣∣∣
∑

∀i,j=1,...,n,

Aij 〈ui, vj〉

∣∣∣∣∣∣ ≤ K max
xi,yj∈{±1}

∣∣∣∣∣∣
∑
i,j

Aijxiyj

∣∣∣∣∣∣
where K = π

2 log(1+
√
2)
≈ 1.783.

Remark The smallest possible value for K is called the Grothendieck’s constant and is denoted by KG.
It has been proved that KG is strictly smaller than π

2 log(1+
√
2)

, but the latter remains the best known

upper bound on KG. See [Khot and Naor, 2012] for a survey of the use of Grothendieck’s inequality in
combinatorial optimization.

We give a proof of Theorem 3 for KG ≤ K = π
2 log(1+

√
2)

. The key step of the proof is the following

lemma, where S(H) denote the unit sphere of a Hilbert space H.
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Lemma 2. There exists a Hilbert space H and functions Φ,Ψ : S(Rn)→ S(H) such that

〈u, v〉 =
2K

π
arcsin〈Φ(u),Ψ(v)〉, ∀u, v ∈ S(Rn),

where K = π
2 log(1+

√
2)
.

Proof We introduce some tensor notations.
For a vector u ∈ Rn, the order-3 rank-one tensor T := u⊗3 ∈ Rn×n×n is defined via Tijl = uiujul. The

inner product of two tensors is defined as 〈T, S〉 =
∑
i,j,l TijlSijl. These definitions can be generalized to

higher order tensors of the form u⊗k for k = 2, 3, . . . Note that u⊗2 = uu>.
Taking Taylor’s expalnsion of sin(·) at 0, we have

sin(〈u, v〉) = 〈u, v〉 − 1

3!
〈u, v〉3 +

1

5!
〈u, v〉5 − · · ·

= 〈u, v〉 − 1

3!
〈u⊗3, v⊗3〉+

1

5!
〈u⊗5, v⊗5〉 − · · ·

=

〈
u

−
√

1
3!u
⊗3√

1
5!u
⊗5

...

 ,


v√
1
3!v
⊗3√

1
5!v
⊗5

...


〉
.

Set Φ(u) to be the unit vector proportional to


u

−
√

1
3!u
⊗3√

1
5!u
⊗5

...

 and Ψ(v) to be the unit vector proportional to


v√
1
3!v
⊗3√

1
5!v
⊗5

...

. One can verify that the normalization constant is π
2K (this can be checked by looking at Taylor’s

expansion of sinh(·)). This completes the proof of Lemma 2.

Proof of Grothendieck’s inequality: For any ui, vj ∈ S(Rn):∑
i,j

Aij 〈ui, vj〉

=K
∑
i,j

Aij
2

π
arcsin 〈Φ (ui) ,Ψ (vj)〉 (Lemma 2)

=K
∑
i,j

AijEw∼Gaussian [sign 〈w,Φ (ui)〉 · sign 〈w,Ψ (vj)〉] (Recall angular kernel from lecture 5)

6K · max
xi,yj∈{±1}

∣∣∣∣∣∣
∑
i,j

Aijxiyj

∣∣∣∣∣∣ .
The proof is completed by taking the maximum of both sides over ui, vj ∈ S(Rn).
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4 Generalization of Grothendieck’s inequality

The above proof of the Grothendieck’s inequality is called Krivine’s method. A related proof uses the called
Rietz’s method, which can be used to established a high-rank version of the Grothendieck’s inequality.

For A ∈ Rn×n and k ∈ {1, 2, · · · , n}, define

SDP(A) := max{〈A, Y 〉 : Y � 0, Yii = 1 ∀i}
OPTk(A) := max{〈A, Y 〉 : Y � 0, Yii = 1 ∀i, rank(Y ) ≤ k}

One can check that OPT1(A) is the RHS of the Grothendieck’s inequality in Theorem 3. We have the
following generalization:

Theorem 4 ([Montanari and Sen, 2016], Theorem 4 and Remark 6). For sufficiently large k, it holds that(
1− 1

k

)
SDP(A)− 1

k
|SDP(−A)| ≤ OPTk(A) ≤ SDP(A).

In particular, if SDP(A) � SDP(−A), then

SDP(A) ≤
(

1 +O
(1

k

))
OPTk(A).
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