
Lecture 16–17: Sparse Regression (4/7,4/9)

Readings:

• Chap 7.1, 7.4 and 7.6 in Wainwright book.

• The following slides by Wainwright, which complements the above materials:

www.cs.berkeley.edu/~wainwrig/winedale/Wainwright_Winedale_060312.pdf

• Chap 10.6 of Vershynin book.

• Chap 10.1–10.3 and 10.5 in Vershynin book, which presents a different view of sparse regres-
sion.

1 Sparse Regression in High Dimension

Suppose that
y = Xβ∗ + e,

where X ∈ Rn×d is the covariate matrix, y ∈ Rn the response, e ∈ Rn the noise, and β∗ ∈ Rd the
unknown parameter.

When n < d, we cannot hope to recover β∗, because there are less equations than variables.
Need additional assumption/structure for β∗. We assume that β∗ is sparse.

1.1 Lasso

To find a sparse solution, ideally we would like to solve the `0-regularized least square problem

min
β∈Rd

1

2n
‖Xβ − y‖22 + λ ‖β‖0 , (1)

where ‖β‖0 := |support(β)| is the number of non-zero coordinates of β. The `0 “norm” ‖·‖0 is in
fact not a norm, and in particular not convex. The non-convex program (1) is in general hard to
solve.

For computational tractability, we replace the `0 “norm” by its convex approximation, the `1
norm ‖·‖1. This gives an `1-regularized least-squares problem known as Lasso:

β̂ ∈ arg min
β∈Rp

1

2n
‖Xβ − y‖22 + λ ‖β‖1 . (2)

Remark 1. It can be shown that the `1 norm is the best convex approximation of the `0 “norm” in
a precise sense; see Lemma 5 below.

1

www.cs.berkeley.edu/~wainwrig/winedale/Wainwright_Winedale_060312.pdf


2 Bounds on Estimation Error of Lasso

We consider the following statistical setting:

• Sparsity: ‖β∗‖0 ≤ k.

• Gaussian design: Xij
iid∼ N (0, 1).

• Gaussian noise: ei
iid∼ N (0, σ2).

• Independence: X ⊥ e.

Theorem 2. Under the above setting, suppose that the sample size satisfies

n & k log

(
d

k

)
, (3)

and the regularization parameter in Lasso (2) satisfies

λ & σ

√
log d

n
.

Then with probability at least 1− cd−2, the Lasso solution β̂ satisfies the error bound∥∥∥β̂ − β∗∥∥∥
2
.
√
kλ. (4)

Consequences

• If we take λ � σ
√

log d
n , then we get the error bound

∥∥∥β̂ − β∗∥∥∥
2
. σ

√
k log d
n , which is (almost)

minimax optimal. (We are very close though: the optimal bound is σ
√

k log(d/k)
n .1)

• In particular, if σ → 0, then taking λ → 0 gives
∥∥∥β̂ − β∗∥∥∥

2
→ 0. That is, we have exact

recovery in the noiseless setting.

• If we take λ larger than the optimal value σ
√

log d
n , then Lasso still works, albeit with a larger,

sub-optimal error (underfitting).

• If we take λ too small (� σ
√

log d
n ), then Theorem 2 is not applicable (overfitting).

• In practice, we may choose λ by estimating the noise variance σ2, or by cross-validation.2

Remark 3. Theorem 2 bounds the estimation error
∥∥∥β̂ − β∗∥∥∥

2
. In the last lecture we derived

bounds on the prediction error
∥∥∥X(β̂ − β∗)

∥∥∥, which in general requires weaker assumptions on the
covariates/features X.

1This optimal bound cannot be achieved by Lasso but rather requires a different approach such as SLOPE, which
uses sorted-`1-norm regularization.)

2There is a variant of Lasso called Square-Root Lasso:

min
β∈Rd

1

2n
‖Xβ − y‖2 + λ ‖β‖1 ,

which does not require estimation σ2 but is a bit harder to solve than Lasso (SOCP vs QP).
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3 Proof of Theorem 2

Let T := support(β∗) = {j : β∗j 6= 0} and ∆ := β̂ − β∗ be the error vector. The proof follows from
the following four claims:

1. Basic inequality: 1
2n ‖X∆‖22 ≤

1
n

∥∥X>e∥∥∞ ‖∆‖1 + λ
(
‖β∗‖1 −

∥∥∥β̂∥∥∥
1

)
.

2. Cone inequality: ‖∆T c‖1 ≤ 3 ‖∆T ‖1.

3. Noise bound: With probability at least1− cd−2,

1

n

∥∥∥X>e∥∥∥
∞
≤ Cσ

√
log d

n
≤ λ

2
.

4. Restricted Strong Convexity (RSC): With probability at least 1− 2e−cn,

1

n
‖Xu‖22 ≥

1

2
‖u‖22 , ∀u ∈ Rd : ‖uT c‖1 ≤ 3 ‖uT ‖1 . (5)

We prove these results later.
Assuming Claims 1-4 hold, the theorem follows easily. We have

1

4
‖∆‖22 ≤

1

2n
‖X∆‖22 RSC applied to ∆ satisfying cone inequality

≤ 1

n

∥∥∥X>e∥∥∥
∞
‖∆‖1 + λ

(
‖β∗‖1 −

∥∥∥β̂∥∥∥
1

)
basic inequality

. λ ‖∆‖1 + λ (‖β∗‖1 − ‖β
∗ + ∆‖1) noise bound

≤ 2λ ‖∆‖1 . triangle inequality

We bound the RHS by observing that

‖∆‖1 = ‖∆T ‖1 + ‖∆T c‖1 decomposability of the `1 norm
≤ 4 ‖∆T ‖1 cone inequality

≤ 4
√
k ‖∆T ‖2 |T | ≤ k

≤ 4
√
k ‖∆‖2 .

Combining the last two equations, we obtain ‖∆‖22 . λ
√
k ‖∆‖2 , which implies the desired error

bound.

3.1 Proof of Claim 1: Basic inequality

Basic inequality means that the optimal solution β̂ has an objective value at least as good as that
of β∗, which is a feasible solution. Analysis of many optimization-based algorithms involve such an
inequality. We have encountered it before in non-parameteric regression.

Specifically to Lasso, we have

1

2n

∥∥∥Xβ̂ − y∥∥∥2

2
+ λ

∥∥∥β̂∥∥∥
1
≤ 1

2n
‖Xβ∗ − y‖22 + λ ‖β∗‖ .
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Using β̂ = β∗ + ∆ and y = Xβ∗ + e, we rewrite the above inequality as

1

2n
‖X(β∗ + ∆)−Xβ∗ − e‖22 + λ

∥∥∥β̂∥∥∥
1
≤ 1

2n
‖Xβ∗ −Xβ∗ − e‖22 + λ ‖β∗‖1

⇓
1

2n
‖X∆− e‖22 + λ

∥∥∥β̂∥∥∥
1
≤ 1

2n
‖e‖22 + λ ‖β∗‖1 .

Expanding the `2 norm on the LHS

‖X∆− e‖22 = (X∆− e)>(X∆− e) = ‖X∆‖22 + ‖e‖22 − 2e>X∆,

we obtain

1

2n
‖X∆‖22 ≤

1

n
e>X∆ + λ

(
‖β∗‖1 −

∥∥∥β̂∥∥∥
1

)
≤ 1

n

∥∥∥X>e∥∥∥
∞
‖∆‖1 + λ

(
‖β∗‖1 −

∥∥∥β̂∥∥∥
1

)
.

3.2 Proof of Claim 2: Cone inequality

Lower bounding the last LHS by 0, we obtain

0 ≤ 1

n

∥∥∥X>e∥∥∥
∞
‖∆‖1 + λ

(
‖β∗‖1 −

∥∥∥β̂∥∥∥
1

)
≤ 1

2
λ ‖∆‖1 + λ (‖β∗‖1 − ‖β

∗ + ∆‖1) noise bound (proved later)

≤ 1

2
λ (‖∆T ‖1 + ‖∆T c‖1) + λ (‖β∗‖1 − ‖(β

∗ + ∆)T ‖1 − ‖(β
∗ + ∆)T c‖1) decomposability of the `1 norm

≤ 1

2
λ (‖∆T ‖1 + ‖∆T c‖1) + λ (‖∆T ‖1 − ‖∆T c‖1) triangle inequlaity and β∗T c = 0

=
3

2
λ ‖∆T ‖1 −

1

2
‖∆T c‖1 .

Rearranging gives the cone inequality ‖∆T c‖1 ≤ 3 ‖∆T ‖1 .

3.3 Proof of Claim 3: Noise bound

Let Xj denote the j-th column of X. We want to upper bound

1

n

∥∥∥X>e∥∥∥
∞

=
1

n
max
j=1,...,p

∣∣∣X>j e∣∣∣ .
For each j we can bound X>j e using concentration inequalities, and then use the union bound. (Left
as exercise. Hint: condition on Xj .) Doing so gives

1

n
max
j=1,...,p

∣∣∣X>j e∣∣∣ ≤ Cσ√ log d

n
.

By assumption, λ2 is larger than the last RHS.
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3.4 Proof of Claim 4: Restricted Strong Convexity

This is the most technical part of the proof. The proof is broken into two steps: we first show that
X satisfies a property called Restricted Isometry Property (RIP), and then prove that RIP implies
RSC.

3.4.1 Step 1: Gaussian design satisfies RIP

We show that X is an approximate isometric mapping when restricted to sparse vectors.

Lemma 4 (RIP). If n ≥ Ck log
(
d
k

)
for a sufficiently large positive constant C, then the matrix X

satisfies (
1− 1

8

)
‖v‖22 ≤

1

n
‖Xv‖22 ≤

(
1 +

1

8

)
‖v‖22 , ∀v ∈ Rd : ‖v‖0 ≤ 32k

with probability at least 1− 2e−cn.

Proof. Let S ⊂ {1, 2, . . . d} be a fixed subset of column indices with |S| ≤ m := 32k. LetXS ∈ Rn×m
be the submatrix of X with column indices in S. Then for all vectors v ∈ Rd supported on S, we
have ∣∣∣∣ 1n ‖Xv‖22 − ‖v‖22

∣∣∣∣ =

∣∣∣∣ 1n ‖XSv‖22 − ‖v‖
2
2

∣∣∣∣
=

∣∣∣∣v>S ( 1

n
X>S XS

)
vS − v>S vS

∣∣∣∣
=

∣∣∣∣v>S ( 1

n
X>S XS − Im

)
vS

∣∣∣∣
≤ ‖v‖22 ·

∥∥∥∥ 1

n
X>S XS − Im

∥∥∥∥
op
.

We can bound the RHS using previous results on (sub-)Gaussian random matrices. In particular,
we use Theorem 1 in Lecture 8, but take t = 1

8 in the proof. Doing so shows that with probability
at least 1− 2e−c0n, ∥∥∥∥ 1

n
X>S XS − Im

∥∥∥∥
op
≤ 1

8
.

Combining the last two equations gives∣∣∣∣ 1n ‖Xv‖22 − ‖v‖22
∣∣∣∣ ≤ 1

8
· ‖v‖22 ∀v ∈ Rd : support(v) = S.

Taking a union bound over
(
d
m

)
possible subsets S with |S| = m, we find that∣∣∣∣ 1n ‖Xv‖22 − ‖v‖22

∣∣∣∣ ≤ 1

8
· ‖v‖22 ∀v ∈ Rd : ‖v‖0 ≤ m

with probability at least

1− 2e−c0n ·
(
d

m

)
≥ 1− 2e−c0n+m log(ed/m)

(
d

m

)
≤
(
ed

m

)m
= em log(ed/m)

≥ 1− 2e−cn. n & k log(d/k) � m log(ed/m) by assumption
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3.4.2 Step 2: RIP implies RSC

Lemma 4 shows that X satisfies RIP with high probability. We next show that this implies RSC.
This part of the proof is completely deterministic and geometrical. In particular, we make use of
the following geometric result:

Lemma 5 (Convex hull of sparse vectors = `1 ball). We have

{
x ∈ Rp : ‖x‖1 ≤ 4

√
k, ‖x‖2 ≤ 1

}
︸ ︷︷ ︸

A

⊆ conv

(
{x ∈ Rp : ‖x‖0 ≤ 16k, ‖x‖2 ≤ 2}︸ ︷︷ ︸

B

)
.

Remark 6. It is easy to show the reverse inclusion B ⊆ 2A.

Proof. Consider an arbitrary x ∈ A. We want to write x as

x =
∑
i

αiv
i

for some vi ∈ B, αi ≥ 1 and
∑

i αi = 1.
Partition the support of x into subsets T1, T2, . . ., so that T1 indexes the largest (in absolute

value) 16k elements of x, T2 the next 16k largest elements, and so on. For i ≥ 2, each coordinate
of xTi is smaller in magnitude than the average of the coordinates of xTi−1 , so

‖xTi‖2 ≤
√

16k ·max
j∈Ti
|xj | ≤

√
16k · min

j∈Ti−1

|xj |

≤
√

16k · 1

16k

∑
j∈Ti−1

|xj | =
1√
16k

∥∥xTi−1

∥∥
1
.

Summing up, we get

γ :=
∑
i≥1

‖xTi‖2 = ‖xT1‖2 +
∑
i≥2

‖xTi‖2

≤ ‖xT1‖2 +
1√
16k

∑
i≥2

∥∥xTi−1

∥∥
1

≤ 1 +
1√
16k
‖x‖1

≤ 1 +
1√
16k
· 4
√
k = 2.

Therefore, we have the desired decomposition

x =

m∑
i=1

xTi =
‖xTi‖2
γ︸ ︷︷ ︸
αi

× γ xTi
‖xTi‖2︸ ︷︷ ︸
vi

,

where
∑

i αi = 1 by definition,
∥∥vi∥∥

2
= γ ≤ 2 and thus vi ∈ B. Since x ∈ A is arbitrary, the lemma

follows.

6



We return to our goal of establishing RSC:
1

n
‖Xu‖22 ≥

1

2
‖u‖22 , when ‖uT c‖1 ≤ 3 ‖uT ‖1 .

With out loss of generality, we may assume that ‖u‖2 = 1. Note that the cone condition means
‖u‖1 ≤ 4 ‖uT ‖ ≤ 4

√
k ‖uT ‖2 ≤ 4

√
k. So u ∈ A. Using Lemma 5, we can write such a u as

u =
∑
i

αiv
i

with vi ∈ B,
∑

i αi = 1 and αi ≥ 0. It follows that

1

n
‖Xu‖22 =

1

n
u>X>Xu

=
1

n

(∑
i

αiv
i

)>
X>X

(∑
i

αiv
i

)

=
∑
i,j

αiαj

(
1

n
(vi)TX>Xvj

)
.

We focus on each term in the parenthesis: one has
1

n

〈
Xvi, Xvj

〉
=

1

n
· 1

4

(∥∥X(vi + vj)
∥∥2

2
−
∥∥X(vi − vj)

∥∥2

2

)
"polarization identity"

≥ 1

4

(
7

8

∥∥vi + vj
∥∥2 − 9

8

∥∥vi − vj∥∥2
) ∥∥vi ± vj∥∥

0
≤ 32k; RIP

=
1

4

(
4
〈
vi, vj

〉
− 1

4
(
∥∥vi∥∥2

2
+
∥∥vj∥∥2

2
)

)
≥
〈
vi, vj

〉
− 1

2
.

∥∥vi∥∥2

2
≤ 4

It follows that
1

n
‖Xu‖22 ≥

∑
i.j

αiαj

(〈
vi, vj

〉
− 1

2

)

=

〈∑
i

αiv
i,
∑
j

αjv
j

〉
− 1

2

(∑
i

αi

)∑
j

αj


= ‖u‖22 −

1

2

=
1

2
‖u‖22 ‖u‖ = 1 by assumption

As u is arbitrary in the cone, we conclude that RSC holds.

4 Generalization to Matrices

The sparse regression problem has a natural generalization to the matrix setting. Let 〈A,B〉 =
trace

(
A>B

)
denote the trace inner product between two matrices. Consider the model

yi =
〈
Xi,Θ∗

〉
+ ei, i = 1, . . . , n,
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where we assume

• Low-rank: Θ∗ ∈ Rd×d has rank-r;

• Gaussian design: the sensing/covariate matrices Xi ∈ Rd×d satisfies Xi
ab ∼ N(0, 1), indepen-

dently across i ∈ [n] and (a, b) ∈ [d]× [d];

• Gaussian noise: the noise ei satisfies ei ∼ N(0, σ2), independently across i;

• Independence: {Xi} and {ei} are independent.

This problem is sometimes called matrix sensing, as it is the matrix counterpart of the compressed
sensing problem.

To recovery Θ∗, we consider the following nuclear norm regularized least-squares problem

Θ̂ ∈ arg min
Θ∈Rd×d

1

2n

n∑
i=1

(〈
Xi,Θ

〉
− yi

)2
+ λ ‖Θ‖∗ , (6)

where ‖Θ‖∗ is the nuclear norm of Θ, defined as the sum of the singular values of Θ. The nuclear
norm is a convex approximation to the (non-convex) rank function, which equals the number of
non-zero singular values. The program (6) is sometiems called Matrix Lasso, for obvious reasons.
It can be written as an SDP and is hence a convex program.

Much of the analysis for Lasso can be generalized to the above setting. Let us first introduce a
useful piece of notation. Define the linear opeartor X : Rd×d → Rn with elements [X (Θ)]i =

〈
Xi,Θ

〉
.

Thent the matrix sensing model and Matrix Lasso can be written compactly as

y = X (Θ∗) + e

and
Θ̂ ∈ arg min

Θ∈Rd×d
1

2n
‖X (Θ)− y‖22 + λ ‖Θ‖∗ .

With the above notation, one can show that a form of RIP holds: if n & rd log d, then with high
probability,(

1− 1

8

)
‖D‖2F ≤

1

n
‖X (D)‖22 ≤

(
1 +

1

8

)
‖D‖2F , ∀D ∈ Rd×d : rank(D) ≤ r.

We also have a form of RSC:

1

n
‖X (D)‖22 ≥

1

4
‖D‖2F , ∀D ∈ Rd×d : ‖D‖∗ ≤ 10

√
r ‖D‖F .

In homework, we will work through some of these results.
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