
ORIE 7790 High Dimensional Probability and Statistics Lecture 11 - 02/27/2020

Lecture 11: Random Processes and Chaining
Lecturer: Yudong Chen Scribe: Billy Jin

Reading:

• Sec 7.4 and 8.1 of Vershynin book,

• Sec 5.3 of Wainwright.

In this lecture, we give two examples where using Sudakov’s lower bound in reverse can be used to bound
the covering number of a set. We then prove Dudley’s entropy integral upper bound and apply it to prove
a uniform law of large numbers.

1 Applications of Sudakov to Bounding Covering Number

First, recall Sudakov’s minorization inequality from last lecture.

Theorem 1. Let (Zθ)θ∈T be a zero-mean Gaussian process. Then

E
[

sup
θ∈T

Zθ

]
& ε
√

logN(ε, T, ρ),

where ρ(θ, θ′) :=
√
E(Zθ − Zθ′)2.

1.1 Covering Number of the `1-Ball

Let Bd1 := {θ ∈ Rd : ‖θ‖1 ≤ 1} be the `1 unit ball in Rd. Consider the canonical Gaussian process:

Zθ = 〈θ, g〉 for all θ ∈ Bd1,

where g ∼ N(0, Id). Recall from last lecture that the canonical metric for this process is ρ(θ, θ′) = ‖θ − θ′‖2.
Applying Sudakov’s inequality, we obtain that, for all ε > 0,

ε
√

logN(ε,Bd1, ‖·‖2) . E

[
sup
θ∈Bd1
〈θ, g〉

]

≤ E

[
sup
θ∈Bd1
‖θ‖1 ‖g‖∞

]
= E [ ‖g‖∞]

The first inequality is Sudakov’s bound, and the second inequality is by Hölder’s inequality. (The second
inequality is also easy to see directly.) Hence it suffices to bound E ‖g‖∞; the following lemma tells us how
to do this.

Lemma 1. Let gi be a σ2-sub-Gaussian RV for each i = 1, . . . , d. Then Emaxi |gi| . σ
√

log d.

1



Proof We have, for all β > 0,

Emax |gi| =
1

β
E log eβmax|gi|

=
1

β
E log eβ·max{gi,−gi}

=
1

β
E log max{eβgi , e−βgi}

≤ 1

β
E log

(
d∑
i=1

eβgi +

d∑
i=1

e−βgi

)
max ≤ sum

≤ 1

β
logE

(
d∑
i=1

eβgi +

d∑
i=1

e−βgi

)
Jensen’s

=
1

β
log
(
2dE eβg

)
linearity of expectation

≤ 1

β
log
(

2d · eβ
2σ2/2

)
MGF definition of sub-Gaussian RV

. σ
√

log d. pick β =

√
2 log d

σ2

Remark Note that the lemma does not require the gi’s to be independent. Finally, the lemma still holds
if each gi is sub-Gaussian.

Using Lemma 1, we get

ε
√

logN(ε,Bd1, ‖·‖2) . E ‖g‖∞ .
√

log d.

Thus, the metric entropy of the `1-ball is upper bounded by

logN(ε,Bd1, ‖·‖2) .
1

ε2
log d.

Compare this with the metric entropy of the `2-ball from Lecture 8:

logN(ε,Bd2, ‖·‖2) . d log

(
1 +

4

ε

)
.

We see that in high dimensions, the metric entropy of the `2-ball is much larger than that of the `1-ball.

1.2 Covering Number of a Polytope

Suppose P ⊆ Rd is a polytope with m vertices, with radius bounded by 1; that is, maxθ∈P ‖θ‖2 ≤ 1. Let
θ(1), . . . , θ(m) be the m vertices. Then, Sudakov’s inequality tells us that, for all ε > 0,

ε
√

logN(ε, P, ‖·‖2) . E sup
θ∈P
〈θ, g〉 = E max

i∈[m]

〈
θ(i), g

〉
.

The last equality is because the maximum of a linear function over a polytope is always attained at one of

the extreme points. Note that
〈
θ(i), g

〉
∼ N(0,

∥∥θ(i)∥∥2
2
), and

∥∥θ(i)∥∥
2
≤ 1. Thus, by Lemma 1 (which does

not require independence), we have

E max
i∈[m]

〈
θ(i), g

〉
.
√

logm.
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It follows that

logN(ε, P, ‖·‖2) .
1

ε2
logm.

Note that this bound is independent of the dimension d! Compare this bound with the naive bound

logN(ε, P, ‖·‖2) ≤ logN(ε,Bd2, ‖·‖2) ≤ d log

(
1 +

4

ε

)
For these bounds to be equal, we need the number of vertices m to be exponential in the dimension d. If m
is, say, polynomial in d, then the bound 1

ε2 logm we calculated for P is much better.

2 Dudley’s Upper Bound

Recall: (Sub-Gaussian increments) Let (Zθ)θ∈T be so that Zθ−Zθ′ is sub-Gaussian with parameter ρ(θ, θ′)2,
for all θ, θ′ ∈ T . Here, ρ is a metric on T .

Theorem 2 (Dudley’s entropy integral bound). Suppose that (Zθ)θ∈T is a zero-mean process with sub-
Gaussian increments with respect to the metric ρ. Then

E
[

sup
θ∈T

Zθ

]
.
∫ ∞
0

√
logN(ε, T, ρ)dε.

Remark Compare this with Sudakov’s lower bound, which states that E [ supθ∈T Zθ ] & ε
√

logN(ε, T, ρ)

for all ε > 0. Dudley’s upper bound is the area under the graph of
√

logN(ε, T, ρ), whereas Sudakov’s lower
bound is the largest area of a rectangle under the same graph.

The proof of Dudley’s upper bound uses a technique called chaining, which is a multi-scale version of the
ε-net argument. To motivate, consider bounding the expected operator norm of a random matrix X:

E ‖X‖op = E sup
u∈Sd−1

‖Xu‖2

≤ E sup
u0∈Sε

‖Xu0‖2 + E sup
‖u−u0‖≤ε

‖X(u− u0)‖2

= E sup
u0∈Sε

‖Xu0‖2 + εE sup
‖u−u0‖≤1

‖X(u− u0)‖2 .

The first term can be bounded by a union bound over the ε-net Sε. Note that the second term happens to
be a scaled version of what we wanted to bound. However, this is a coincidence that may not happen in
general. Chaining is the technique of continuing the ε-net argument on the residual second term.
Proof First, a few definitions:

• Let D := supθ,θ′∈T ρ(θ, θ′) be the diameter of T .

• Define the dyadic scale: εk := D · 2−k for k = 0, 1, 2, . . .

• Let Tk be the smallest εk-net of T . Then |Tk| = N(εk, T, ρ).

• For θ ∈ T , let πk(θ) be the closest point in Tk to θ. So ρ(πk(θ), θ) ≤ εk.

Note that T0 = {θ0} for some θ0 ∈ T , and π0(θ) = θ0 for all θ ∈ T . Also, since the Zθ’s are zero-mean, we
have

E sup
θ∈T

Zθ = E sup
θ∈T

(Zθ − Zθ0) .
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To bound the RHS of the last equation, we write Zθ − Zθ0 as a telescoping sum:

Zθ − Zθ0 =
(
Zπ1(θ) − Zπ0(θ)

)
+
(
Zπ2(θ) − Zπ1(θ)

)
+ · · ·+

(
Zθ − ZπM (θ)

)
=

M∑
k=1

(
Zπk(θ) − Zπk−1(θ)

)
+
(
Zθ − ZπM (θ)

)
,

where M is any positive integer. It follows that

E sup
θ∈T

(Zθ − Zθ0) ≤ E
M∑
k=1

sup
θ∈T

(
Zπk(θ) − Zπk−1(θ)

)
+ E sup

θ∈T

(
Zθ − ZπM (θ)

)
.

Consider the kth term in the sum:
E sup
θ∈T

(
Zπk(θ) − Zπk−1(θ)

)
.

Recall that the RV Zπk(θ) − Zπk−1(θ) is sub-Gaussian with a parameter satisfying∥∥Zπk(θ) − Zπk−1(θ)

∥∥
ψ2

= ρ(πk(θ), πk−1(θ))

≤ ρ(πk(θ), θ) + ρ(πk−1(θ), θ) triangle inequality of the metric ρ

≤ εk + εk−1 by construction

≤ 2εk−1. by construction

Thus, we have a supremum of at most |Tk| × |Tk−1| sub-Gaussian random variables with parameter 4ε2k−1.
Using the bound on the maximum of sub-Gaussian random variables (Lemma 1), we obtain that

E sup
θ∈T

(
Zπk(θ) − Zπk−1(θ)

)
. εk−1

√
log |Tk| |Tk−1|

. εk−1
√

log |Tk|.

It follows that

E sup
θ∈T

(Zθ − Zθ0) .
M∑
k=1

εk−1
√

logN(εk, T, ρ) + E sup
θ∈T

(
Zθ − ZπM (θ)

)
=

M∑
k=1

D · 2−(k−1)
√

logN(D · 2−k, T, ρ) + E sup
θ∈T

(
Zθ − ZπM (θ)

)
.
∫ D

D·2−(M−1)

√
logN(ε, T, ρ)dε+ E sup

θ∈T

(
Zθ − ZπM (θ)

)
≤
∫ D

0

√
logN(ε, T, ρ)dε,

where the last inequality is because the second term goes to zero as M → ∞. (This requires a separability
assumption on T ; this was omitted in the lecture and is omitted in these notes.)

3 Application: Uniform Law of Large Numbers

Let X1, . . . , Xn be iid random variables taking values in [0, 1]. For a fixed function f : [0, 1]→ R, the usual
Law of Large Numbers says

1

n

n∑
i=1

f(Xi)→ E f(X1) as n→∞,
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where the convergence is in probability or almost sure.
Can we prove uniform convergence over a class of functions F? The following theorem gives one such

result.

Theorem 3. Let F be the set of all functions from [0, 1] to R that are 1-Lipschitz. Then

E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E f(X1)

∣∣∣∣∣ . 1√
n

Proof For any f ∈ F , because f is 1-Lipschitz, we have∣∣∣∣∣ sup
x∈[0,1]

f(x)− inf
x∈[0,1]

f(x)

∣∣∣∣∣ ≤ 1.

Thus, by translating if necessary, we may assume that f : [0, 1] → [0, 1]. Consider the following empirical
process (Zf )f∈F indexed by f ∈ F :

Zf :=
1

n

n∑
i=1

f(Xi)− E f(X1)

Then EZf = 0, since the Xi’s are iid. Moreover, we have

Zf − Zg =
1

n

n∑
i=1

(f − g) (Xi)− E(f − g)(X1).

It follows that

‖Zf − Zg‖ψ2
.

1

n

∥∥∥∥∥
n∑
i=1

(f − g)(Xi)

∥∥∥∥∥
ψ2

(centering)

.
1

n

√√√√ n∑
i=1

‖(f − g)(Xi)‖2ψ2
(sum of sub-Gaussians is sub-Gaussian by Hoeffding)

.
1

n

√√√√ n∑
i=1

‖(f − g)(Xi)‖2∞ (bounded RVs are sub-Gaussian)

=
1√
n
‖f − g‖∞ .

So, (Zf )f∈F has sub-Gaussian increments with respect to the metric ρ(f, g) := 1√
n
‖f − g‖∞. Now, applying

Dudley’s bound, we obtain

E sup
f∈F
|Zf | .

1√
n

∫ 1

0

√
logN(ε,F , ‖·‖∞) dε (since diameter(F) ≤ 1) (1)

Remark Note that this is not a direct application of Dudley’s bound, since Dudley’s inequality bounds
E supf∈F Zf , not E supf∈F |Zf |. However, if we examine the proof of Dudley’s inequality carefully, it actually
shows that

E sup
θ∈T
|Zθ − Zθ0 | .

∫ ∞
0

√
logN(ε, T, ρ) dε

for any θ0 ∈ T . Taking θ0 = 0 ∈ F to be the zero function, we get that E supf∈F |Zf | = E supf∈F |Zf − Z0|,
and this is how Dudley’s inequality gives us the bound in (1).
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It remains to bound N(ε,F , ‖·‖∞). To do this, we construct an exterior ε-net Fε of F . (i.e., We don’t
require that Fε ⊂ F .) The construction of a usual ε-net is left to the homework. The construction of Fε is
a mesh argument that covers F using step functions, and looks pictorially like this:

Figure 1: Covering Lipschitz functions using step functions.

One can show that |Fε| ≤
(
1
ε

) 1
ε . (A smaller ε-net can be constructed; see the homework.) Plugging this

into the integral in Dudley’s bound, we obtain that

E sup
f∈F
|Zf | .

1√
n

∫ 1

0

√
log

(
1

ε

) 1
ε

dε =

√
2π√
n
,

which completes the proof.

Remark Let µ be the distribution of Xi, and let µn be the empirical distribution:

µn :=
1

n

n∑
i=1

1xi .

With this notation, we have

E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E f(X1)

∣∣∣∣∣ = E sup
f∈F

∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣ ,
which is the Wasserstein distance between µn and µ. (The definition is equivalent to the one using trans-
portation cost, by Kantorovich-Rubinstein duality).

6


