ORIE 7790 High Dimensional Probability and Statistics Lecture $11-02 / 27 / 2020$
Lecture 11: Random Processes and Chaining
Lecturer: Yudong Chen
Scribe: Billy Jin

Reading:

- Sec 7.4 and 8.1 of Vershynin book,
- Sec 5.3 of Wainwright.

In this lecture, we give two examples where using Sudakov's lower bound in reverse can be used to bound the covering number of a set. We then prove Dudley's entropy integral upper bound and apply it to prove a uniform law of large numbers.

1 Applications of Sudakov to Bounding Covering Number

First, recall Sudakov's minorization inequality from last lecture.
Theorem 1. Let $\left(Z_{\theta}\right)_{\theta \in T}$ be a zero-mean Gaussian process. Then

$$
\mathbb{E}\left[\sup _{\theta \in T} Z_{\theta}\right] \gtrsim \epsilon \sqrt{\log N(\epsilon, T, \rho)},
$$

where $\rho\left(\theta, \theta^{\prime}\right):=\sqrt{\mathbb{E}\left(Z_{\theta}-Z_{\theta^{\prime}}\right)^{2}}$.

1.1 Covering Number of the ℓ_{1}-Ball

Let $\mathbb{B}_{1}^{d}:=\left\{\theta \in \mathbb{R}^{d}:\|\theta\|_{1} \leq 1\right\}$ be the ℓ_{1} unit ball in \mathbb{R}^{d}. Consider the canonical Gaussian process:

$$
Z_{\theta}=\langle\theta, g\rangle \quad \text { for all } \theta \in \mathbb{B}_{1}^{d},
$$

where $g \sim N\left(0, I_{d}\right)$. Recall from last lecture that the canonical metric for this process is $\rho\left(\theta, \theta^{\prime}\right)=\left\|\theta-\theta^{\prime}\right\|_{2}$. Applying Sudakov's inequality, we obtain that, for all $\epsilon>0$,

$$
\begin{aligned}
\epsilon \sqrt{\log N\left(\epsilon, \mathbb{B}_{1}^{d},\|\cdot\|_{2}\right)} & \lesssim \mathbb{E}\left[\sup _{\theta \in \mathbb{B}_{1}^{d}}\langle\theta, g\rangle\right] \\
& \leq \mathbb{E}\left[\sup _{\theta \in \mathbb{B}_{1}^{d}}\|\theta\|_{1}\|g\|_{\infty}\right] \\
& =\mathbb{E}\left[\|g\|_{\infty}\right]
\end{aligned}
$$

The first inequality is Sudakov's bound, and the second inequality is by Hölder's inequality. (The second inequality is also easy to see directly.) Hence it suffices to bound $\mathbb{E}\|g\|_{\infty}$; the following lemma tells us how to do this.
Lemma 1. Let g_{i} be a σ^{2}-sub-Gaussian $R V$ for each $i=1, \ldots, d$. Then $\mathbb{E} \max _{i}\left|g_{i}\right| \lesssim \sigma \sqrt{\log d}$.

Proof We have, for all $\beta>0$,

$$
\begin{array}{rlr}
\mathbb{E} \max \left|g_{i}\right| & =\frac{1}{\beta} \mathbb{E} \log e^{\beta \max \left|g_{i}\right|} \\
& =\frac{1}{\beta} \mathbb{E} \log e^{\beta \cdot \max \left\{g_{i},-g_{i}\right\}} \\
& =\frac{1}{\beta} \mathbb{E} \log \max \left\{e^{\beta g_{i}}, e^{-\beta g_{i}}\right\} & \\
& \leq \frac{1}{\beta} \mathbb{E} \log \left(\sum_{i=1}^{d} e^{\beta g_{i}}+\sum_{i=1}^{d} e^{-\beta g_{i}}\right) & \\
& \leq \frac{1}{\beta} \log \mathbb{E}\left(\sum_{i=1}^{d} e^{\beta g_{i}}+\sum_{i=1}^{d} e^{-\beta g_{i}}\right) & \\
& =\frac{1}{\beta} \log \left(2 d \mathbb{E} e^{\beta g}\right) \quad \text { Jax } \leq \text { sum } \\
& \leq \frac{1}{\beta} \log \left(2 d \cdot e^{\beta^{2} \sigma^{2} / 2}\right) \quad \text { Jensen's } \\
& \lesssim \sigma \sqrt{\log d .} & \\
\end{array}
$$

Remark Note that the lemma does not require the g_{i} 's to be independent. Finally, the lemma still holds if each g_{i} is sub-Gaussian.

Using Lemma 1, we get

$$
\epsilon \sqrt{\log N\left(\epsilon, \mathbb{B}_{1}^{d},\|\cdot\|_{2}\right)} \lesssim \mathbb{E}\|g\|_{\infty} \lesssim \sqrt{\log d}
$$

Thus, the metric entropy of the ℓ_{1}-ball is upper bounded by

$$
\log N\left(\epsilon, \mathbb{B}_{1}^{d},\|\cdot\|_{2}\right) \lesssim \frac{1}{\epsilon^{2}} \log d
$$

Compare this with the metric entropy of the ℓ_{2}-ball from Lecture 8:

$$
\log N\left(\epsilon, \mathbb{B}_{2}^{d},\|\cdot\|_{2}\right) \lesssim d \log \left(1+\frac{4}{\epsilon}\right) .
$$

We see that in high dimensions, the metric entropy of the ℓ_{2}-ball is much larger than that of the ℓ_{1}-ball.

1.2 Covering Number of a Polytope

Suppose $P \subseteq \mathbb{R}^{d}$ is a polytope with m vertices, with radius bounded by 1 ; that is, $\max _{\theta \in P}\|\theta\|_{2} \leq 1$. Let $\theta^{(1)}, \ldots, \theta^{(m)}$ be the m vertices. Then, Sudakov's inequality tells us that, for all $\epsilon>0$,

$$
\epsilon \sqrt{\log N\left(\epsilon, P,\|\cdot\|_{2}\right)} \lesssim \mathbb{E} \sup _{\theta \in P}\langle\theta, g\rangle=\mathbb{E} \max _{i \in[m]}\left\langle\theta^{(i)}, g\right\rangle
$$

The last equality is because the maximum of a linear function over a polytope is always attained at one of the extreme points. Note that $\left\langle\theta^{(i)}, g\right\rangle \sim N\left(0,\left\|\theta^{(i)}\right\|_{2}^{2}\right)$, and $\left\|\theta^{(i)}\right\|_{2} \leq 1$. Thus, by Lemma 1 (which does not require independence), we have

$$
\mathbb{E} \max _{i \in[m]}\left\langle\theta^{(i)}, g\right\rangle \lesssim \sqrt{\log m}
$$

It follows that

$$
\log N\left(\epsilon, P,\|\cdot\|_{2}\right) \lesssim \frac{1}{\epsilon^{2}} \log m
$$

Note that this bound is independent of the dimension d ! Compare this bound with the naive bound

$$
\log N\left(\epsilon, P,\|\cdot\|_{2}\right) \leq \log N\left(\epsilon, \mathbb{B}_{2}^{d},\|\cdot\|_{2}\right) \leq d \log \left(1+\frac{4}{\epsilon}\right)
$$

For these bounds to be equal, we need the number of vertices m to be exponential in the dimension d. If m is, say, polynomial in d, then the bound $\frac{1}{\epsilon^{2}} \log m$ we calculated for P is much better.

2 Dudley's Upper Bound

Recall: (Sub-Gaussian increments) Let $\left(Z_{\theta}\right)_{\theta \in T}$ be so that $Z_{\theta}-Z_{\theta^{\prime}}$ is sub-Gaussian with parameter $\rho\left(\theta, \theta^{\prime}\right)^{2}$, for all $\theta, \theta^{\prime} \in T$. Here, ρ is a metric on T.

Theorem 2 (Dudley's entropy integral bound). Suppose that $\left(Z_{\theta}\right)_{\theta \in T}$ is a zero-mean process with subGaussian increments with respect to the metric ρ. Then

$$
\mathbb{E}\left[\sup _{\theta \in T} Z_{\theta}\right] \lesssim \int_{0}^{\infty} \sqrt{\log N(\epsilon, T, \rho)} \mathrm{d} \epsilon
$$

Remark Compare this with Sudakov's lower bound, which states that $\mathbb{E}\left[\sup _{\theta \in T} Z_{\theta}\right] \gtrsim \epsilon \sqrt{\log N(\epsilon, T, \rho)}$ for all $\epsilon>0$. Dudley's upper bound is the area under the graph of $\sqrt{\log N(\epsilon, T, \rho)}$, whereas Sudakov's lower bound is the largest area of a rectangle under the same graph.

The proof of Dudley's upper bound uses a technique called chaining, which is a multi-scale version of the ϵ-net argument. To motivate, consider bounding the expected operator norm of a random matrix X :

$$
\begin{aligned}
\mathbb{E}\|X\|_{\mathrm{op}} & =\mathbb{E} \sup _{u \in \mathbb{S}^{d-1}}\|X u\|_{2} \\
& \leq \mathbb{E} \sup _{u_{0} \in S_{\epsilon}}\left\|X u_{0}\right\|_{2}+\mathbb{E} \sup _{\left\|u-u_{0}\right\| \leq \epsilon}\left\|X\left(u-u_{0}\right)\right\|_{2} \\
& =\mathbb{E} \sup _{u_{0} \in S_{\epsilon}}\left\|X u_{0}\right\|_{2}+\epsilon \mathbb{E} \sup _{\left\|u-u_{0}\right\| \leq 1}\left\|X\left(u-u_{0}\right)\right\|_{2} .
\end{aligned}
$$

The first term can be bounded by a union bound over the ϵ-net S_{ϵ}. Note that the second term happens to be a scaled version of what we wanted to bound. However, this is a coincidence that may not happen in general. Chaining is the technique of continuing the ϵ-net argument on the residual second term.
Proof First, a few definitions:

- Let $D:=\sup _{\theta, \theta^{\prime} \in T} \rho\left(\theta, \theta^{\prime}\right)$ be the diameter of T.
- Define the dyadic scale: $\epsilon_{k}:=D \cdot 2^{-k}$ for $k=0,1,2, \ldots$
- Let T_{k} be the smallest ϵ_{k}-net of T. Then $\left|T_{k}\right|=N\left(\epsilon_{k}, T, \rho\right)$.
- For $\theta \in T$, let $\pi_{k}(\theta)$ be the closest point in T_{k} to θ. So $\rho\left(\pi_{k}(\theta), \theta\right) \leq \epsilon_{k}$.

Note that $T_{0}=\left\{\theta_{0}\right\}$ for some $\theta_{0} \in T$, and $\pi_{0}(\theta)=\theta_{0}$ for all $\theta \in T$. Also, since the Z_{θ} 's are zero-mean, we have

$$
\mathbb{E} \sup _{\theta \in T} Z_{\theta}=\mathbb{E} \sup _{\theta \in T}\left(Z_{\theta}-Z_{\theta_{0}}\right)
$$

To bound the RHS of the last equation, we write $Z_{\theta}-Z_{\theta_{0}}$ as a telescoping sum:

$$
\begin{aligned}
Z_{\theta}-Z_{\theta_{0}} & =\left(Z_{\pi_{1}(\theta)}-Z_{\pi_{0}(\theta)}\right)+\left(Z_{\pi_{2}(\theta)}-Z_{\pi_{1}(\theta)}\right)+\cdots+\left(Z_{\theta}-Z_{\pi_{M}(\theta)}\right) \\
& =\sum_{k=1}^{M}\left(Z_{\pi_{k}(\theta)}-Z_{\pi_{k-1}(\theta)}\right)+\left(Z_{\theta}-Z_{\pi_{M}(\theta)}\right)
\end{aligned}
$$

where M is any positive integer. It follows that

$$
\mathbb{E} \sup _{\theta \in T}\left(Z_{\theta}-Z_{\theta_{0}}\right) \leq \mathbb{E} \sum_{k=1}^{M} \sup _{\theta \in T}\left(Z_{\pi_{k}(\theta)}-Z_{\pi_{k-1}(\theta)}\right)+\mathbb{E} \sup _{\theta \in T}\left(Z_{\theta}-Z_{\pi_{M}(\theta)}\right) .
$$

Consider the k th term in the sum:

$$
\mathbb{E} \sup _{\theta \in T}\left(Z_{\pi_{k}(\theta)}-Z_{\pi_{k-1}(\theta)}\right)
$$

Recall that the RV $Z_{\pi_{k}(\theta)}-Z_{\pi_{k-1}(\theta)}$ is sub-Gaussian with a parameter satisfying

$$
\begin{aligned}
\left\|Z_{\pi_{k}(\theta)}-Z_{\pi_{k-1}(\theta)}\right\|_{\psi_{2}} & =\rho\left(\pi_{k}(\theta), \pi_{k-1}(\theta)\right) & & \\
& \leq \rho\left(\pi_{k}(\theta), \theta\right)+\rho\left(\pi_{k-1}(\theta), \theta\right) & & \text { triangle inequality of the metric } \rho \\
& \leq \epsilon_{k}+\epsilon_{k-1} & & \text { by construction } \\
& \leq 2 \epsilon_{k-1} . & & \text { by construction }
\end{aligned}
$$

Thus, we have a supremum of at most $\left|T_{k}\right| \times\left|T_{k-1}\right|$ sub-Gaussian random variables with parameter $4 \epsilon_{k-1}^{2}$. Using the bound on the maximum of sub-Gaussian random variables (Lemma 1), we obtain that

$$
\begin{aligned}
\mathbb{E} \sup _{\theta \in T}\left(Z_{\pi_{k}(\theta)}-Z_{\pi_{k-1}(\theta)}\right) & \lesssim \epsilon_{k-1} \sqrt{\log \left|T_{k}\right|\left|T_{k-1}\right|} \\
& \lesssim \epsilon_{k-1} \sqrt{\log \left|T_{k}\right|}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\mathbb{E} \sup _{\theta \in T}\left(Z_{\theta}-Z_{\theta_{0}}\right) & \lesssim \sum_{k=1}^{M} \epsilon_{k-1} \sqrt{\log N\left(\epsilon_{k}, T, \rho\right)}+\mathbb{E} \sup _{\theta \in T}\left(Z_{\theta}-Z_{\pi_{M}(\theta)}\right) \\
& =\sum_{k=1}^{M} D \cdot 2^{-(k-1)} \sqrt{\log N\left(D \cdot 2^{-k}, T, \rho\right)}+\mathbb{E} \sup _{\theta \in T}\left(Z_{\theta}-Z_{\pi_{M}(\theta)}\right) \\
& \lesssim \int_{D \cdot 2^{-(M-1)}}^{D} \sqrt{\log N(\epsilon, T, \rho)} \mathrm{d} \epsilon+\mathbb{E} \sup _{\theta \in T}\left(Z_{\theta}-Z_{\pi_{M}(\theta)}\right) \\
& \leq \int_{0}^{D} \sqrt{\log N(\epsilon, T, \rho)} \mathrm{d} \epsilon
\end{aligned}
$$

where the last inequality is because the second term goes to zero as $M \rightarrow \infty$. (This requires a separability assumption on T; this was omitted in the lecture and is omitted in these notes.)

3 Application: Uniform Law of Large Numbers

Let X_{1}, \ldots, X_{n} be iid random variables taking values in $[0,1]$. For a fixed function $f:[0,1] \rightarrow \mathbb{R}$, the usual Law of Large Numbers says

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right) \rightarrow \mathbb{E} f\left(X_{1}\right) \quad \text { as } n \rightarrow \infty
$$

where the convergence is in probability or almost sure.
Can we prove uniform convergence over a class of functions \mathcal{F} ? The following theorem gives one such result.

Theorem 3. Let \mathcal{F} be the set of all functions from $[0,1]$ to \mathbb{R} that are 1-Lipschitz. Then

$$
\mathbb{E} \sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)-\mathbb{E} f\left(X_{1}\right)\right| \lesssim \frac{1}{\sqrt{n}}
$$

Proof For any $f \in \mathcal{F}$, because f is 1 -Lipschitz, we have

$$
\left|\sup _{x \in[0,1]} f(x)-\inf _{x \in[0,1]} f(x)\right| \leq 1
$$

Thus, by translating if necessary, we may assume that $f:[0,1] \rightarrow[0,1]$. Consider the following empirical process $\left(Z_{f}\right)_{f \in \mathcal{F}}$ indexed by $f \in \mathcal{F}$:

$$
Z_{f}:=\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)-\mathbb{E} f\left(X_{1}\right)
$$

Then $\mathbb{E} Z_{f}=0$, since the X_{i} 's are iid. Moreover, we have

$$
Z_{f}-Z_{g}=\frac{1}{n} \sum_{i=1}^{n}(f-g)\left(X_{i}\right)-\mathbb{E}(f-g)\left(X_{1}\right)
$$

It follows that

$$
\begin{aligned}
\left\|Z_{f}-Z_{g}\right\|_{\psi_{2}} & \lesssim \frac{1}{n}\left\|\sum_{i=1}^{n}(f-g)\left(X_{i}\right)\right\|_{\psi_{2}} \\
& \lesssim \frac{1}{n} \sqrt{\sum_{i=1}^{n}\left\|(f-g)\left(X_{i}\right)\right\|_{\psi_{2}}^{2}} \quad \text { (sum of sub-Gaussians is sub-Gaussian by Hoeffding) } \\
& \lesssim \frac{1}{n} \sqrt{\sum_{i=1}^{n}\left\|(f-g)\left(X_{i}\right)\right\|_{\infty}^{2}} \quad \quad \text { (bounded RVs are sub-Gaussian) } \\
& =\frac{1}{\sqrt{n}}\|f-g\|_{\infty}
\end{aligned}
$$

So, $\left(Z_{f}\right)_{f \in \mathcal{F}}$ has sub-Gaussian increments with respect to the metric $\rho(f, g):=\frac{1}{\sqrt{n}}\|f-g\|_{\infty}$. Now, applying Dudley's bound, we obtain

$$
\begin{equation*}
\mathbb{E} \sup _{f \in \mathcal{F}}\left|Z_{f}\right| \lesssim \frac{1}{\sqrt{n}} \int_{0}^{1} \sqrt{\log N\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right)} \mathrm{d} \epsilon \quad(\text { since diameter }(\mathcal{F}) \leq 1) \tag{1}
\end{equation*}
$$

Remark Note that this is not a direct application of Dudley's bound, since Dudley's inequality bounds $\mathbb{E} \sup _{f \in \mathcal{F}} Z_{f}$, not $\mathbb{E} \sup _{f \in \mathcal{F}}\left|Z_{f}\right|$. However, if we examine the proof of Dudley's inequality carefully, it actually shows that

$$
\mathbb{E} \sup _{\theta \in T}\left|Z_{\theta}-Z_{\theta_{0}}\right| \lesssim \int_{0}^{\infty} \sqrt{\log N(\epsilon, T, \rho)} \mathrm{d} \epsilon
$$

for any $\theta_{0} \in T$. Taking $\theta_{0}=0 \in \mathcal{F}$ to be the zero function, we get that $\mathbb{E} \sup _{f \in \mathcal{F}}\left|Z_{f}\right|=\mathbb{E} \sup _{f \in \mathcal{F}}\left|Z_{f}-Z_{0}\right|$, and this is how Dudley's inequality gives us the bound in (1).

It remains to bound $N\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right)$. To do this, we construct an exterior ϵ-net \mathcal{F}_{ϵ} of \mathcal{F}. (i.e., We don't require that $\mathcal{F}_{\epsilon} \subset \mathcal{F}$.) The construction of a usual ϵ-net is left to the homework. The construction of \mathcal{F}_{ϵ} is a mesh argument that covers \mathcal{F} using step functions, and looks pictorially like this:

Figure 1: Covering Lipschitz functions using step functions.
One can show that $\left|\mathcal{F}_{\epsilon}\right| \leq\left(\frac{1}{\epsilon}\right)^{\frac{1}{\epsilon}}$. (A smaller ϵ-net can be constructed; see the homework.) Plugging this into the integral in Dudley's bound, we obtain that

$$
\mathbb{E} \sup _{f \in \mathcal{F}}\left|Z_{f}\right| \lesssim \frac{1}{\sqrt{n}} \int_{0}^{1} \sqrt{\log \left(\frac{1}{\epsilon}\right)^{\frac{1}{\epsilon}}} \mathrm{~d} \epsilon=\frac{\sqrt{2 \pi}}{\sqrt{n}}
$$

which completes the proof.
Remark Let μ be the distribution of X_{i}, and let μ_{n} be the empirical distribution:

$$
\mu_{n}:=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{x_{i}}
$$

With this notation, we have

$$
\mathbb{E} \sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)-\mathbb{E} f\left(X_{1}\right)\right|=\mathbb{E} \sup _{f \in \mathcal{F}}\left|\int f \mathrm{~d} \mu_{n}-\int f \mathrm{~d} \mu\right|,
$$

which is the Wasserstein distance between μ_{n} and μ. (The definition is equivalent to the one using transportation cost, by Kantorovich-Rubinstein duality).

