ORIE 7790 High Dimensional Probability and Statistics Lecture 11 - 02/27/2020

Lecture 11: Random Processes and Chaining
Lecturer: Yudong Chen Scribe: Billy Jin

Reading:
e Sec 7.4 and 8.1 of Vershynin book,
e Sec 5.3 of Wainwright.

In this lecture, we give two examples where using Sudakov’s lower bound in reverse can be used to bound
the covering number of a set. We then prove Dudley’s entropy integral upper bound and apply it to prove
a uniform law of large numbers.

1 Applications of Sudakov to Bounding Covering Number

First, recall Sudakov’s minorization inequality from last lecture.

Theorem 1. Let (Zy)ger be a zero-mean Gaussian process. Then

E [sup Zo ] > /log N (e, T.p),

0T
where p(0,0") := \/E(Zy — Zy/)?.
1.1 Covering Number of the /;-Ball
Let B{ := {6 € R?: ||0]|, < 1} be the ¢; unit ball in R%. Consider the canonical Gaussian process:
Zog=(0,g) forall § e BY,

where g ~ N(0, I4). Recall from last lecture that the canonical metric for this process is p(6,6") = ||0 — ¢'||,.
Applying Sudakov’s inequality, we obtain that, for all € > 0,

e\/log N (e, B, |-],) S E Lsqud (0.9) ]
€8y

<E l sup |[60], IIQIOO]
0eBg

=E[lgllo]

The first inequality is Sudakov’s bound, and the second inequality is by Holder’s inequality. (The second
inequality is also easy to see directly.) Hence it suffices to bound E ||g|| . ; the following lemma tells us how
to do this.

Lemma 1. Let g; be a 0%-sub-Gaussian RV for eachi=1,...,d. Then Emax; |g;| < ov/logd.



Proof We have, for all g > 0,

1
Emax |g;| = B Elog P max|gi|

1
= —Elog efmax{gi,—gi}
B
1
= E Elog max{eﬁgi, e*ﬂgi}
1 d d
< BElog <Zeﬁ9i+Zeﬁgi> max < sum
i=1 i=1
1 d d
< B log E <Z ePoi 4 Z eﬁgi> Jensen’s
i=1 i=1
1
= 3 log (2dEeBg) linearity of expectation
1
< B log (2d . 66202/2) MGPF definition of sub-Gaussian RV
2logd
< o4/logd. pick 8 = 02g
o

O

Remark Note that the lemma does not require the g;’s to be independent. Finally, the lemma still holds
if each g; is sub-Gaussian.

Using Lemma 1, we get

e\/log N (e, BY. |1I,) S E gl < viogd.

Thus, the metric entropy of the £1-ball is upper bounded by
d < 1
log N (e, BT, ||-l5) ?logd.

Compare this with the metric entropy of the £5-ball from Lecture 8:

4
log N(e, B, |-I) S dlog (1 " ) |
€
We see that in high dimensions, the metric entropy of the £5-ball is much larger than that of the ¢;-ball.

1.2 Covering Number of a Polytope

Suppose P C R? is a polytope with m vertices, with radius bounded by 1; that is, maxgep [|0]|, < 1. Let
6 ...,00") be the m vertices. Then, Sudakov’s inequality tells us that, for all € > 0,

e\log N (e, P, |11,) S Esup (6, 9) = Emax (07, g) .
oep i€[m]

The last equality is because the maximum of a linear function over a polytope is always attained at one of
the extreme points. Note that (6, g) ~ N(0, HH(”HE), and Hﬁ(i)Hz < 1. Thus, by Lemma 1 (which does

not require independence), we have
E m[ax] <9(i), g> < y/logm.
i€lm



It follows that 1
log N(e, P, ||) S  logm.

Note that this bound is independent of the dimension d! Compare this bound with the naive bound
d 4
log N(e, P, |[lo) < log N(e, By, ||-|l) < dlog { 1+ —

For these bounds to be equal, we need the number of vertices m to be exponential in the dimension d. If m
is, say, polynomial in d, then the bound 6% logm we calculated for P is much better.

2 Dudley’s Upper Bound

Recall: (Sub-Gaussian increments) Let (Zg)ger be so that Zy— Zy is sub-Gaussian with parameter p(, 6)?,
for all 6,6 € T. Here, p is a metric on T.

Theorem 2 (Dudley’s entropy integral bound). Suppose that (Zg)per is a zero-mean process with sub-
Gaussian increments with respect to the metric p. Then

E {sup Zg } < / Vieg N(e, T, p)de.
0eT 0
Remark Compare this with Sudakov’s lower bound, which states that E [ supyer Zo | 2 €v/log N (¢, T, p)

for all € > 0. Dudley’s upper bound is the area under the graph of y/log N (e, T, p), whereas Sudakov’s lower
bound is the largest area of a rectangle under the same graph.

The proof of Dudley’s upper bound uses a technique called chaining, which is a multi-scale version of the
e-net argument. To motivate, consider bounding the expected operator norm of a random matrix X:

w _

<E sup [[Xugll, +E sup [|X(u—uo)ll,

ugESe lu—uoll<e
=E sup || Xuglly+€E sup [ X(u—wuo)l,-
up€Se lu—uol|<1

The first term can be bounded by a union bound over the e-net S.. Note that the second term happens to
be a scaled version of what we wanted to bound. However, this is a coincidence that may not happen in
general. Chaining is the technique of continuing the e-net argument on the residual second term.

Proof First, a few definitions:

e Let D :=supy g7 p(0,0') be the diameter of T'.

e Define the dyadic scale: €, := D -27% for k =0,1,2,...

e Let Ty be the smallest ex-net of T'. Then |Tj| = N(ex, T, p).

e For § € T, let m(0) be the closest point in Ty, to 0. So p(m(6),0) < €.

Note that To = {6g} for some 6y € T, and 7y(0) = 0y for all § € T. Also, since the Zy’s are zero-mean, we
have

Esup Zyp =Esup (Zy — Zy,) -
6eT 0eT



To bound the RHS of the last equation, we write Zy — Zy, as a telescoping sum:

Zo = Zoy = (Zx1(0) = Zmo(0)) + (Zma(0) = Zmr(0)) + -+ (Z0 = Zrrs(0))

M:

Zar®) = Zrn 10)) T (Z0 = Zrpy(0)) »
k:l

where M is any positive integer. It follows that

M
Esup (Zy — Zp,) < EZSup Wk( y — Zﬂ'k—l(e)) + E sup (Zg — Z’Tl']\/[(e)) .
0eT P 196 0T
Consider the kth term in the sum:

Esup (Zr,(6) = Zry_1(9)) -
0T

Recall that the RV Z, (9) — Zx, _, (o) is sub-Gaussian with a parameter satisfying

HZFk(G) - Zﬂ'k‘—l(G)sz = p(ﬂ-k(e)vﬂ'k—l(e))

< p(m(0),0) + p(mr-1(0),0) triangle inequality of the metric p
<€+ €p_1 by construction
< 2€_1. by construction

Thus, we have a supremum of at most |Tj| x |T;_1| sub-Gaussian random variables with parameter 4e; ;.
Using the bound on the maximum of sub-Gaussian random variables (Lemma 1), we obtain that

Ezug (Zﬂ'k(9) - Zﬂ'k—l(e)) 5 €p—1V log ‘Tk| |Tk_1|
€
S er—1V/1og [Tk /.

It follows that

M:

Esup (Zg — Zp,) <
0eT

IOg N(evaa P) + Ezug (Za - ZTI'M(Q))
€

M
Z D- 2_(k_1)\/log N(D-27%,T,p) + Esup (Zs — Zny,(0))

0T

/ V1og N (¢, T, p)de + Esup (Zg — ZFM(Q))

D.2—(M—1) 0eT
g/ V1og N(e, T, p)de,
0

where the last inequality is because the second term goes to zero as M — co. (This requires a separability
assumption on T'; this was omitted in the lecture and is omitted in these notes.) O

2\
[

3 Application: Uniform Law of Large Numbers

Let X1,...,X, be iid random variables taking values in [0, 1]. For a fixed function f : [0,1] — R, the usual
Law of Large Numbers says

fo )= Ef(X1) asn— oo,



where the convergence is in probability or almost sure.
Can we prove uniform convergence over a class of functions F? The following theorem gives one such
result.

Theorem 3. Let F be the set of all functions from [0,1] to R that are 1-Lipschitz. Then

E sup
feF

Zf ~Ef(X1)| S

%\

Proof For any f € F, because f is 1-Lipschitz, we have

sup f(z)— inf f(x)l <1.

z€[0,1] z€[0,1]

Thus, by translating if necessary, we may assume that f : [0,1] — [0,1]. Consider the following empirical
process (Zy)ser indexed by f € F:

Zf —E f(X1)

Then E Z; = 0, since the X;’s are iid. Moreover, we have

n

2y~ Zy =~ 32— 0) (X) ~E(f — g)(X)

i=1
It follows that
1 || _
1Zs = Zlly, o Z(f - 9)(X3) (centering)
i=1 P2
1
S n Z Il(f —a)( ||w2 (sum of sub-Gaussians is sub-Gaussian by Hoeffding)
1 n
S = Z Il(f — 9)(X1)||io (bounded RVs are sub-Gaussian)
n
i=1
1
= % ||f - g”oo

So, (Zf) ter has sub-Gaussian increments with respect to the metric p(f, g) := f | f — gllo- Now, applying
Dudley’s bound, we obtain

1 1
Esup |Z g—/ log N (e, F, || de since diameter(F) <1 1
swp |71 5 = | fog NG F ) de (F)<1) M

Remark Note that this is not a direct application of Dudley’s bound, since Dudley’s inequality bounds
Esupser Zf, not Esupysc » |Z¢|. However, if we examine the proof of Dudley’s inequality carefully, it actually

shows that -
Bsup|Z— Za,| S [ VIENETp)de
0eT 0

for any 0y € T'. Taking 6y = 0 € F to be the zero function, we get that Esup ez [Z¢| = Esuper [Zf — Zo|,
and this is how Dudley’s inequality gives us the bound in (1).



It remains to bound N (e, F, ||-||,)- To do this, we construct an exterior e-net F. of F. (i.e., We don’t
require that 7. C F.) The construction of a usual e-net is left to the homework. The construction of F, is
a mesh argument that covers F using step functions, and looks pictorially like this:

4] I b 1

Figure 1: Covering Lipschitz functions using step functions.
1
One can show that |F.| < () <. (A smaller e-net can be constructed; see the homework.) Plugging this
into the integral in Dudley’s bound, we obtain that

1
I 1\ = V2
Esup\Zf|§—/ log <> dez—w,
fer Vv Jo € Vn

which completes the proof. O

Remark Let p be the distribution of X;, and let u,, be the empirical distribution:

With this notation, we have

n

Esup |~ 3 £(X;) — E f(X1)

fer |

)

=Ewﬁ/ﬁw—/ﬁm
feF

which is the Wasserstein distance between p,, and p. (The definition is equivalent to the one using trans-
portation cost, by Kantorovich-Rubinstein duality).



