
ORIE 7790 High Dimensional Probability and Statistics Lecture 12–13 - 3/3,5/2020

Lecture 12–13: Statistical Learning Theory
Lecturer: Yudong Chen Scribe: Miaolan Xie, Polina Alexeenko

Reading:

• Sec 8.4 of Vershynin book,

• Sec 4.1 and 4.2 of Wainwright,

• Sec 3.3 of Duchi’s notes.

In this lecture, we introduce statistical learning theory. In particular, e will study the theoretical founda-
tions of statistical learning, including techniques for bounding the test error. We will formalize and generalize
the idea that the accuracy with which we learn a function is proportional to the complexity of the function
class.

1 Statistical Learning Theory

We denote by f∗ : X → [0, 1] the unknown true regression function. We observe n data points (Xi, f
∗(Xi), i =

1, . . . , n, whereXi is drawn i.i.d. from some unknown distribution µ. We would like to use the data to compute
an estimator f̂ of f∗.

For each function f , we define the population risk to be

L (f) = EX∼µ (f (X)− f∗ (X))
2
.

Ideally, we want to find the population minimizer

f0 , arg min
f∈F

L (f) .

However, L (f) is not computable. Instead, we consider the minimizing the empirical risk, defined as

arg min
f∈F

Ln (f) ,
1

n

n∑
i=1

(f (xi)− f∗ (xi))
2
.

This is called the empirical risk minimization (ERM) approach, where we use

f̂ = arg min
f∈F

Ln (f)

as our estimator of f∗.

Risk decomposition. We aim to bound the population risk of the empirical risk minimizer f̂ . The risk
can be decomposed as follows:

L
(
f̂
)

︸ ︷︷ ︸
test error

=
[
L
(
f̂
)
− Ln

(
f̂
)]

︸ ︷︷ ︸
generalization error

+ Ln

(
f̂
)

︸ ︷︷ ︸
training error

≤
[
L (f∗)− Ln

(
f̂
)]

+ Ln (f0)

=
[
L
(
f̂
)
− Ln

(
f̂
)]

+ [Ln (f0)− L (f0)]︸ ︷︷ ︸
estimation error

+ L (f0)︸ ︷︷ ︸
approximation error

≤ 2 sup
f∈F
|Ln (f)− L (f)|+ L (f0) .
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Remark Note that the above bound, particularly the last step, may not be tight. We will consider more
advanced techniques in later lectures.

Rearranging terms, we obtain the bound

L
(
f̂
)
− L (f0)︸ ︷︷ ︸

excess risk

≤ 2 sup
f∈F
|Ln (f)− L (f)|

= 2 sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f (Xi)− f∗ (Xi))
2 − E (f (X)− f∗ (X))

2

∣∣∣∣∣ .
2 Upper Bound by Rademacher Complexity

We can upper bound the right hand side by using Rademacher complexity. Assume that the functions in F
are [0, 1]-valued, and that f∗ is also [0, 1] valued. Letting g := (f − f∗)2, we define the function class

G =
{
x 7→ (f (x)− f∗ (x))

2
: f ∈ F

}
.

Then we can write

sup
f∈F
|Ln (f)− L (f)| = sup

g∈G

∣∣∣∣∣ 1n
n∑
i=1

g (Xi)− E [g (Xi)]

∣∣∣∣∣ . (1)

We will focus on bounding the expectation of this supremum. The deviation of this supremum from its
expectation can be bounded using concentration inequalities (McDiarmid, Lipschitz concentration, functional
Hoeffding, etc.).

2.1 Symmetrization

The first step is a technique called symmetrization, which we have seen in this course and plays an important
role in high-dimensional probability and statistics. Let

• (Y1, . . . , Yn) be an independent copy of X1, . . . , Xn,

• (ε1, . . . , εn) be i.i.d. Rademacher random variables.

Then the expectation of the supremum in (1) can be bounded as follows:

E sup
g∈G

∣∣∣∣∣
n∑
i=1

[
g (Xi)− Eg (Xi)

]∣∣∣∣∣ = EX sup
g∈G

∣∣∣∣∣
n∑
i=1

[
g (Xi)− EY [g (Yi)]

]∣∣∣∣∣
≤ EX sup

g∈G
EY

∣∣∣∣∣
n∑
i=1

[
g (Xi)− g (Yi)

]∣∣∣∣∣ (by Jensen’s inequality)

≤ EXEY sup
g∈G

∣∣∣∣∣
n∑
i=1

[
g (Xi)− g (Yi)

]∣∣∣∣∣ (by Jensen’s inequality)

= EXEY Eε sup
g∈G

∣∣∣∣∣
n∑
i=1

εi

[
g (Xi)− g (Yi)

]∣∣∣∣∣ (by symmetry)

≤ 2EXEε sup
g∈G

∣∣∣∣∣
n∑
i=1

εig (Xi)

∣∣∣∣∣ . (by the triangle inequality)

The last right hand side is called the Rademacher complexity of G.
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Definition 1 (Rademacher Complexity). The empirical Rademacher complexity of G given X is

Rn(G|X) := Eε sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

εig(Xi)

∣∣∣∣∣ .
The Rademacher complexity of G is

Rn(G) := EX [Rn(G|X)] .

We have therefore proved the following.

Theorem 1. We have

EX sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

[
g (Xi)− E [g (Xi)]

]∣∣∣∣∣ ≤ 2Rn (G) .

2.2 Contraction

Our next step is to deal with the squared quantity inside the expectation, using a technique called contraction
principles.

Theorem 2 (Ledoux-Talagrand Contraction Principle). Let T ⊂ Rn. For each i = 1, . . . , n, let φi : R→ R
be 1-Lipschitz and centered (i.e., φi (0) = 0). We then have

E sup
θ∈T

∣∣∣∣∣
n∑
i=1

εiφi (θi)

∣∣∣∣∣ ≤ 2E sup
θ∈T

∣∣∣∣∣
n∑
i=1

εiθi

∣∣∣∣∣ ,
where ε1, . . . , εn are i.i.d. Rademacher random variables.

We will not prove Theorem 2 here, but we will prove its Gaussian analogue, where the εi’s are replaced
by Gaussian RVs.

Theorem 3 (Gaussian Contraction Principle). Let T ⊂ Rn. For each i = 1, . . . , n, let φi : R → R be
1-Lipschitz. We then have

E sup
θ∈T

n∑
i=1

giφi (θi) ≤ E sup
θ∈T

∑
i

giθi,

where gi
iid∼ N (0, 1).

Theorem 3 can be proved by Gaussian comparison inequalities.
Proof We have the suprema of two Gaussian processes indexed by θ ∈ T :

Xθ =

n∑
i=1

giφi (θi) and Yθ =

n∑
i=1

giθi.

Comparing the increments of these two processes, we have

E
[(
Xθ −Xθ̃

)2]
=

n∑
i=1

(
φi (θi)− φi(θ̃i)

)2
because E

[
g2i
]

= 1

≤
n∑
i=1

(
θi − θ̃i

)2
because φi is 1-Lipschitz

= E
(
Yθ − Yθ̃

)2
.
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Applying the Sudakov-Fernique inequality (Lecture 7, Theorem 2), we obtain that

E sup
θ∈T

Xθ ≤ E sup
θ∈T

Yθ,

thereby proving the theorem.

There is no Rademacher version of the Sudakov-Fernique inequality, so proving the Rademacher contraction
is more involved. Luckily, we still have the Rademacher contraction inequality. Moreover, there are compar-
ison inequalities between Rademacher and Gaussian processes, which we will not talk about here..

Returning to bounding the Rademacher complexity of G, we recall that f, f∗ are [0, 1]-valued and that

g (Xi) = (f (Xi)− f∗ (Xi))
2
. We now apply Theorem 2 by setting θi = f (Xi) − f∗ (Xi) and φi (u) = u2.

Since the domain of f −f∗ is [−1, 1], the function φi restricted to in this domain is 2-Lipschitz. We therefore
have

Rn (G|X) = Eε sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εi [f (Xi)− f∗ (Xi)]
2

∣∣∣∣∣
≤ 2Eε sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

εi [f (Xi)− f∗ (Xi)]

∣∣∣∣∣
≤ 4Eε sup

f∈F

∣∣∣∣∣
n∑
i=1

εif (Xi)

∣∣∣∣∣
= 4Rn (F|X) .

Remark Note that this inequality is sometimes written as

Rn (F ◦ φ) ≤ 4Rn (F) .

2.3 Putting together

In summary, we have obtain an upper bound on the expected excess risk via the following steps:

E
[
Ln

(
f̂
)
− L (f0)

]
. E sup

f∈F
|Ln (f)− L (f)| (risk decomposition)

= E sup
f∈F

∣∣∣∣∣ 1n
n∑
i

(f (Xi)− f∗ (Xi))
2 − E

[
(f (X)− f∗ (X))

2
]∣∣∣∣∣

= E sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

[g (Xi)− E [g (Xi)]]

∣∣∣∣∣ (reparametrization)

. Rn (G) (symmetrization)

. Rn (F) (contraction)

:= EXEε sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif (Xi)

∣∣∣∣∣ .
Note that we have bounded the supremum of one empirical process by that of another, where both

processes are indexed by f ∈ F . The second process, given in the definition of Rn (F) = EX [Rn (F|X)], is
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often easier to control. In particular we can bound Rn (F|X) by conditioning on X, in which case we have
a (canonical) Rademacher process

Rn (F|X) = Eε sup
f∈F

∣∣∣∣ 1n 〈ε, f (Xn
1 )〉
∣∣∣∣ .

A variety of techniques may be used to bound the supremum of this process, including

• a union bound;

• Dudley’s entropy integral bound, e.g., when F is Lipschitz (see Lecture 12);

• VC dimension, e.g., for binary functions, which we do not consider in this course;

• the Talagrand comparison inequality, i.e., Eε supf∈F |〈ε, f (Xn
1 )〉| . Eg∼N(0,I) supf∈F |〈g, f (Xn

1 )〉|,
where the right hand side can be controlled using a rich range of techniques for Gaussian processes
(e.g. Gaussian concentration, comparison and contraction).

In what follows, we give an example of bounding Rn (F) using the union bound.

3 Glivenko-Cantelli Uniform Law of Large Numbers

Consider the RVs X1, . . . , Xn
i.i.d∼ µ with CDF F (θ) := P (X1 ≤ θ). Note that

F (θ) = E [1 {X1 ≤ θ}] .

Introduce the shorthand gθ (X) := 1 {X1 ≤ θ}.
We estimate F using the empirical CDF:

F̂ (θ) :=
1

n

n∑
i=1

1 {Xi ≤ θ} =
1

n

n∑
i=1

gθ (Xi) .

Consider the set of step functions G , {gθ : θ ∈ R}. We are interested in bounding the distance between
F̂ and F in sup norm:

‖F̂ − F‖∞ := sup
θ∈R

∣∣∣F̂ (θ)− F (θ)
∣∣∣ = sup

g∈G

∣∣∣∣∣ 1n
n∑
i=1

(
gθ (Xi)− E [g (Xi)]

)∣∣∣∣∣
. Rn (G) = EX [Rn (G|X)] (from Theorem 1)

= EX

[
Eε sup

g∈G

∣∣∣∣∣ 1n
n∑
i=1

εig (Xi)

∣∣∣∣∣
]

=
1

n
EXEε sup

θ∈R

∣∣∣∣∣
n∑
i=1

εigθ (Xi)

∣∣∣∣∣ .
We shall upper bound the empirical Rademacher complexity Rn (G|X) for each fixed X = (X1, . . . , Xn).

Without loss of generality, we can assume that X1 ≤ X2 ≤ · · · ≤ Xn. Because step function is non-increasing,
the vector (gθ (X1) , . . . , gθ (Xn)) ∈ [0, 1]

n
must be ordered and can take on at most n + 1 possible values,

i.e.,

(0, 0, . . . , 0)

(1, 0, . . . , 0)

(1, 1, . . . , 0)

...

(1, 1, . . . , 1)
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Therefore, the quantity supθ∈R |
∑n
i=1 εigθ (Xi)| is the supremum of at most n+ 1 random variables. More-

over, for each θ, the random variable εigθ (Xi) ∈ [−1, 1] is zero-mean and bounded. It follows that the
sum

∑
i εigθ (Xi) is zero-mean and O (n)-sub-Gaussian (by Hoeffding). Using the sub-Gaussian maximum

expectation inequality (Lemma 3 from Lecture 10), we have

Eε sup
θ∈R

∣∣∣∣∣∑
i

εigθ (Xi)

∣∣∣∣∣ .√log n.

Combining this with the previous result, we have the bound

Eε sup
θ∈R

∣∣∣F̂ (θ)− F (θ)
∣∣∣ .√ log n

n

Using the bounded difference inequality (Theorem 4 from Lectures 5-6) to prove concentration, we obtain
the classical Glivenko Cantelli theorem.

Theorem 4 (Classical Glivenko-Cantelli). With probability at least 1− exp
(
−nδ2

)
, we have

sup
θ∈R

∣∣∣F̂ (θ)− F (θ)
∣∣∣ .√ log n

n
+ δ,

which implies that supθ∈R

∣∣∣F̂ (θ)− F (θ)
∣∣∣→ 0 almost surely.

Remark Note that we can remove the
√

log n factor using Dudley and VC-dimension.
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