ORIE 7790 High Dimensional Probability and Statistics Lecture 14–15 - 03/10,12/2020

Lectures 14–15: Nonparametric Regression

Lecturer: Yudong Chen

Scribe: Sean Sinclair, Connor Lawless

1 Brief Review

Last class we discussed the basics of statistical learning theory framework, using a symmetrization and contraction technique in order to upper bound the population risk by the Randemacher complexity. This week we focus on specializing the setting to non-parametric regression with noisy observations.

Reading: Sections 13.1 and 13.2 in the Wainwright textbook.

2 Problem Setup

Consider the general statistical learning theory set-up, where we observe datapoints $(x_i, y_i)_{i=1}^n$ where

$$y_i = f^\star(x_i) + \sigma w_i$$

and w_i are i.i.d. $\mathcal{N}(0,1)$ random variables. Here σ^2 is the noise variance, $y_i \in \mathcal{Y}$ is the response variable, and $x_i \in \mathcal{X}$ are the covariates or features.

Remark Notice that f^* minimizes the population risk or mean-squared error discussed last week, i.e.

$$f^{\star}(\cdot) = \operatorname*{arg\,min}_{f} \mathbb{E}\left[(Y - f(X))^{2}\right] = \mathbb{E}\left[Y \mid X = \cdot\right],$$

which is the Bayes optimal solution to minimize the expected mean squared error. Unfortunately the conditional distribution of y given x is not known, and so we settle for an approximation using the observed data.

We consider the constrained empirical risk minimizer, where we take our estimate to be

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2,$$

where \mathcal{F} is an user-specified function class.

3 Examples

The main difficulty in non-parametric regression is deciding on a function class \mathcal{F} to optimize over.

nonparam	etric	parametric		
Approximate by	Kernel methods	Approximate with	Approximate with	
locally smoothing		neural network	linear function	

In general there is a spectrum of function classes that can be considered; see the figure above for an illustration. One side of the spectrum constitutes parametric models, where \mathcal{F} can be described by finitely many parameters. These are strong assumptions on the underlying function f^* , but often lead to tighter guarantees which avoid the curse of dimensionality. The other side of the spectrum are nonparametric models, where \mathcal{F} is more complex, thus encompassing more models, but the bounds are sometimes worse. (Note: The picture above should be taken as just an crude illustration. A large neural network, for example, may correspond to a function class more complex than a simpler non-parametric model.)

We will focus on the non-parametric assumption, and give a guarantee that scales on a local complexity instead of a global complexity. We start with some parametric examples.

3.1 Linear Regression

Here we take the function class as

$$\mathcal{F}_C = \left\{ x \mapsto \langle \theta, x \rangle : \theta \in C \subseteq \mathbb{R}^d \right\}.$$

Some examples of this include *ridge regression*, where $C = \{\theta \in \mathbb{R}^d : \|\theta\|_2 \leq R_2\}$, and ℓ_1 regression/LASSO, where $C = \{\theta \in \mathbb{R}^d : \|\theta\|_1 \leq R_1\}$. In general we can have ℓ_q regression, where the set C is the ℓ_q "ball":

$$C = \left\{ \theta \in \mathbb{R}^d : \sum_{j=1}^d |\theta_j|^q \le R_q \right\}$$

for some given number $q \in [0, 2]$.

Next we will be looking at some nonparametric function classes. Some examples include the following.

3.2 Lipschitz Regression

In this setting we take the function class as

$$\mathcal{F}_{\mathrm{Lip}}(L) = \{ f : [0,1] \to \mathbb{R} \mid f(0) = 0, f \text{ is } L\text{-Lipschitz} \}.$$

The optimal solution \hat{f} in this function class will be a piecewise linear approximation of the datapoints $(x_i, y_i)_{i=1}^n$.

3.3 Convex Regression

In this setting we take

$$\mathcal{F}_{\text{conv}} = \{ f : [0, 1] \to \mathbb{R} \mid f \text{ is convex} \}.$$

In this case we need to solve the following (apparently infinite dimensional) optimization problem

$$\hat{f} = \underset{f \in \mathcal{F}_{\text{conv}}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

The solution to this optimization problem can be found numerically as follows.

Step 1: Solve the quadratic program

$$\min_{(\hat{y}_i, \hat{y}_i)_{i=1}^n} \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

s.t. $\hat{y}_j \ge \hat{y}_i + \langle \hat{g}_i, x_j - x_i \rangle, \, \forall i, j = 1, \dots, n.$

These constraints arise because a convex function f satisfies the subgradient condition that $f(x_j) \ge f(x_i) + \langle \nabla f(x_i), x_j - x_i \rangle$.

Step 2: Set the estimate

$$\hat{f}(x) = \max_{i=1,\dots,n} \left\{ \hat{y}_i + \langle \hat{g}_i, x - x_i \rangle \right\}$$

Note that with this estimator we have that $\hat{f}(x_i) = \hat{y}_i$.

The two-step procedure above is equivalent to the original optimization problem, because the objective function of the latter only depends the values of f on the n data points x_1, \ldots, x_n .

3.4 Cubic Smoothing Spline

Here we take the function class as

$$\mathcal{F}(R) = \left\{ f: [0,1] \to \mathbb{R} \mid \int_0^1 (f''(x))^2 dx \le R \right\}.$$

The solution \hat{f} is a natural cubic spline with knots at x_1, \ldots, x_n . This solution can be found by representing the function as a linear combination of certain basis functions

$$\hat{f}(x) = \beta_0 + \overline{\beta_0}x + \sum_{i=1}^n \beta_i (\phi_i(x) - \phi_{n-1}(x)), \quad \text{where} \\ \phi_i(x) = \frac{(x - x_i)_+^3 - (x - x_n)_+^3}{x_n - x_i}, \quad i = 1, \dots, n-1,$$

and then solving for the parameters $\beta_0, \overline{\beta_0}, \beta_1, \ldots, \beta_n$ using standard least squares.

3.5 Kernel Ridge Regression

Here we solve the regularized ERM problem

$$\hat{f} = \underset{f \in H}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda_n \|f\|_H^2,$$

where H is a Reproducing Kernel Hilbert Space (RKHS) with kernel $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. We let $\langle \cdot, \cdot \rangle_H$ denote the inner product in H, which induces the norm $||f||_H^2 = \langle f, f \rangle_H$. If we define the empirical kernel matrix $\hat{K} \in \mathbb{R}^{n \times n}$ with entries $\hat{K}_{i,j} = K(x_i, x_j)/n$, then the solution to the above problem is

$$\hat{f}(\cdot) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{\alpha}_{i} K(\cdot, x_{i}), \quad \text{where}$$
$$\hat{\alpha} = (\hat{K} + \lambda_{n} I_{n})^{-1} \frac{y}{\sqrt{n}}.$$

4 Assumptions

We will focus on trying to bound the empirical error,

$$||f - f^{\star}||_{n}^{2} := \frac{1}{n} \sum_{i=1}^{n} (f(x_{i}) - f^{\star}(x_{i}))^{2}.$$

Using techniques from the previous lectures you can convert this into bounds on the population error

$$||f - f^{\star}||_{\mathcal{L}^{2}(\mu)} := \mathbb{E}_{x \sim \mu} \left[(f(x) - f^{\star}(x))^{2} \right].$$

Before we start, we will need some definitions and assumptions on the function class \mathcal{F} .

Definition 1. The shifted function class is defined as $\mathcal{F}^* := \{f - f^* : f \in \mathcal{F}\}.$

Assumption 1. We assume that the shifted function class \mathcal{F}^{\star} is star-shaped, i.e.,

 $\forall h \in \mathcal{F}^{\star} \text{ and } \alpha \in [0,1] \text{ we have that } \alpha h \in \mathcal{F}^{\star}.$

Notice that under this assumption we have that $0 \in \mathcal{F}^*$, which means that $f^* \in \mathcal{F}$. Because we are considering non-parametric function classes this is a relatively mild assumption on the underlying datageneration process. Moreover, it is easy to see that if \mathcal{F} is convex then \mathcal{F}^* is star-shaped; the converse is not true in general.

Definition 2. The localized Gaussian complexity of \mathcal{F}^* is

$$G_n(\delta, \mathcal{F}^{\star}) := \mathbb{E}\left[\sup_{g \in \mathcal{F}^{\star}, \|g\|_n \le \delta} \left| \frac{1}{n} \sum_{i=1}^n w_i g(x_i) \right| \right],$$

where w_i are i.i.d. $\mathcal{N}(0,1)$. The number $\delta > 0$ is said to be the radius you are measuring the Gaussian complexity of. The **critical radius** δ^* is defined as

$$\delta^{\star} := \min_{\delta > 0} \left\{ \delta \mid \frac{G_n(\delta, \mathcal{F}^{\star})}{\delta} \le \frac{\delta}{2\sigma} \right\}.$$

With these notations, we have the following simple lemma:

Lemma 1. If \mathcal{F}^{\star} is star-shaped, then the function

$$\delta \mapsto \frac{G_n(\delta, \mathcal{F}^\star)}{\delta}$$

is non-increasing on $(0,\infty)$. Consequently, the critical radius δ^* exists and is finite.

Proof Consider any $0 < \delta < t$. We show that $G_n(t, \mathcal{F}^*)/t \leq G_n(\delta, F^*)/\delta$. This proof will crucially use the fact that \mathcal{F}^* is star-shaped.

Consider any $h \in \mathcal{F}^{\star}$ such that $\|h\|_n \leq t$. Define the new function $\tilde{h} = \frac{\delta}{t}h$. Note that $\tilde{h} \in \mathcal{F}^{\star}$ as $\frac{\delta}{t} \leq 1$. Moreover, we have that

$$\left\|\tilde{h}\right\|_{n} = \frac{\delta}{t} \left\|h\right\|_{n} \le \delta.$$

We also have that

$$\frac{1}{n}\left(\frac{\delta}{t}\sum_{i=1}^{n}w_{i}h(x_{i})\right) = \frac{1}{n}\sum_{i=1}^{n}w_{i}\tilde{h}(x_{i}).$$

Combining these two things together and taking the supremum over all $h \in \mathcal{F}^{\star}$ shows that

$$\frac{\delta}{t} \mathbb{E} \left[\sup_{h \in \mathcal{F}^{\star}, \, \|h\|_{n} \leq t} \frac{1}{n} \sum_{i=1}^{n} w_{i} h(x_{i}) \right] \leq \mathbb{E} \left[\sup_{\tilde{h} \in \mathcal{F}^{\star}, \, \left\|\tilde{h}\right\|_{n} \leq \delta} \sum_{i=1}^{n} w_{i} \tilde{h}(x_{i}) \right].$$

The left hand side is $(\delta/t)G_n(t, \mathcal{F}^*)$ and the right hand side is $G_n(\delta, \mathcal{F}^*)$ and hence

$$\frac{G_n(t,\mathcal{F}^\star)}{t} \le \frac{G_n(\delta,\mathcal{F}^\star)}{\delta}.$$

The existence of a finite critical radius δ^* then follows immediately from the fact that the function is non-increasing and $\lim_{\delta \to 0} G_n(\delta, \mathcal{F}^*)/\delta = \infty$.

5 Error Bound

We are now ready to prove an error bound on our ERM \hat{f} versus the true Bayes optimal solution f^* .

Theorem 1. Suppose that \mathcal{F}^* is star-shaped. Then for each number $t \geq \delta^*$, we have

$$\left\|\hat{f} - f^\star\right\|_n^2 \le 16t\delta^\star$$

with probability at least $1 - e^{\frac{nt\delta^*}{2\sigma^2}}$.

Proof We start by noting that since \hat{f} is optimal to ERM, and f^* is feasible we get that

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2 \leq \frac{1}{2n} \sum_{i=1}^{n} (y_i - f^*(x_i))^2$$

$$\Rightarrow \frac{1}{2} \left\| \hat{f} - f^* \right\|_n^2 \leq \frac{\sigma}{n} \sum_{i=1}^{n} w_i (\hat{f}(x_i) - f^*(x_i)). \quad (\text{Rearranging and using } y_i = f^*(x_i) + \sigma w_i)$$

Introducing the shorthand $\Delta = f - f^* \in \mathcal{F}^*$), we can rewrite the above inequality as

$$\frac{1}{2} \left\| \Delta \right\|_n^2 \le \frac{\sigma}{n} \sum_{i=1}^n w_i \Delta(x_i),$$

which is often referred to as the "Basic Inequality".

Since the left hand side is what we want to bound, we need to work on bounding the right-hand side. We start by defining the event

$$A(u) = \left\{ \exists g \in \mathcal{F}^{\star} \cap \{ \|g\|_n \ge u \} : \left| \frac{\sigma}{n} \sum_{i=1}^n w_i g(x_i) \right| \ge 2 \|g\|_n u \right\}$$

for each number $u \geq \delta^*$. Note that the complement of the event A(u) is:

$$A(u)^{c} = \left\{ \forall g \in \mathcal{F}^{\star} \cap \{ \|g\|_{n} \ge u \} : \left| \frac{\sigma}{n} \sum_{i=1}^{n} w_{i}g(x_{i}) \right| < 2 \|g\|_{n} u \right\}.$$

To finish our proof we make use of the following lemma which we'll prove later.

Lemma 2. For all $u \ge \delta^*$ we have

$$Pr[A(u)] \le e^{\frac{-nu^2}{2\sigma^2}}.$$

With this lemma, we can set $u = \sqrt{t\delta^{\star}}$, where $t \ge \delta^{\star}$, and note that $\Pr\left[A(\sqrt{t\delta^{\star}})^{c}\right] \ge 1 - e^{\frac{-nt\delta^{\star}}{2\sigma^{2}}}$. To conclude our proof we simply look at the two cases for $\|\Delta\|_{n}$. If $\|\Delta\|_{n} \le \sqrt{t\delta^{\star}}$, then we're done as $\|\Delta\|_{n}^{2} \le t\delta^{\star} \le 16t\delta^{\star}$. If $\|\Delta\|_{n} > \sqrt{t\delta^{\star}}$, then on the event $A(\sqrt{t\delta^{\star}})^{c}$ we have that

$$\frac{1}{2} \left\| \Delta \right\|_n^2 \le 2 \left\| \Delta \right\|_n \sqrt{t\delta^\star} \Rightarrow \left\| \Delta \right\|_n^2 \le 16t\delta^\star$$

as claimed.

Now for the more involved part, proving Lemma 2.

Proof We start by rewriting $\Pr[A(u)]$ as follows:

$$\begin{aligned} \Pr\left[A(u)\right] &= \Pr\left[\sup_{g \in \mathcal{F}^{\star}, \|g\|_{n} \ge u} \frac{1}{\|g\|_{n}} \left| \frac{\sigma}{n} \langle w, g(x_{1}^{n}) \rangle \right| \ge 2u \right] \\ &\leq \Pr\left[\sup_{g \in \mathcal{F}^{\star}, \|g\|_{n} = u} \left| \frac{\sigma}{n} \langle w, g(x_{1}^{n}) \rangle \right| \ge 2u^{2} \right] \\ &= \Pr\left[Z_{n}(u) \ge 2u^{2}\right], \end{aligned}$$
(rescale by $\frac{u}{\|g\|_{n}}, \mathcal{F}^{\star}$ is star-shaped)

where we define the random variable $Z_n(u) := |\frac{\sigma}{n} \langle w, g(x_1^n) \rangle|$. Concentration: Start by noting that $Z_n(u)$ is a function of w with Lipschitz constant:

$$L \leq \sup_{\|g\|_n = u} \frac{\sigma}{n} \|g(x_1^n)\|_2 = \frac{\sigma}{n} \sqrt{n} \|g\|_n = \frac{\sigma u}{\sqrt{n}}.$$

Using the Gaussian Lipschitz concentration inequality we get:

$$\Pr\left[Z_n(u) \ge \mathbb{E}\left[Z_n(u)\right] + u^2\right] \le e^{\frac{-(u^2)^2}{2\sigma^2 u^2/n}} = e^{-\frac{u^2 n}{2\sigma^2}}.$$

Expectation Bound: We can see that $\mathbb{E}[Z_n(u)] \leq \sigma G_n(u, \mathcal{F}^*)$. By Lemma 1 we know that the function $v \mapsto \frac{G_n(v, \mathcal{F}^*)}{v}$ is non-increasing and by assumption we have $u \geq \delta^*$. It follows that

$$\frac{\sigma G_n(u, \mathcal{F}^\star)}{u} \le \frac{\sigma G_n(\delta^\star, \mathcal{F}^\star)}{\delta^\star} \le \frac{\delta^\star}{2} \le \delta^\star$$

and thus $\mathbb{E}[Z_n(u)] \leq \delta^* u$.

Combining: we get

$$\Pr\left[Z_n(u) \ge 2u^2\right] \le \Pr\left[Z_n(u) \ge u\delta^* + u^2\right] \le e^{-\frac{nu^2}{2\sigma^2}}$$

as claimed.

Now we have a way of bounding $\|\hat{f} - f^*\|_n$ with δ^* , the next step is to find a way to upper bound δ^* . To start we introduce some notation.

Definition 3. We denote by $B_n(\delta)$ as the unit ball with respect to the $\|\cdot\|_n$ norm, i.e.,

$$B_n(\delta) = \{h \in \mathcal{F}^* : \|h\|_n \le \delta\}$$

Definition 4. We let $N_{\delta}(t)$ denote the covering number of $B_n(\delta)$, i.e.,

$$N_{\delta}(t) = N(t, B_n(\delta), \left\|\cdot\right\|_n).$$

Using the above definitions we can get the following theorem:

Theorem 2. If \mathcal{F}^{\star} is star-shaped, and a number $\delta \in [0, \sigma]$ satisfies

$$\frac{16}{\sqrt{n}} \int_{\frac{\delta^2}{4\sigma^2}}^{\delta} \sqrt{\log N_{\delta}(t)} \, \mathrm{d}t \le \frac{\delta^2}{4\sigma}$$

then we have $\delta \geq \delta^{\star}$.

Proof Since $\delta \in [0, \sigma]$, we get that $\frac{\delta^2}{4\sigma} < \delta$, where the RHS is the radius of $B_n(\delta)$. Let $\{g^1, ..., g^M\}$ be a minimal $\frac{\delta^2}{4\sigma}$ -covering of $B_n(\delta)$. So $\forall g \in B_n(\delta), \exists j \text{ s.t. } ||g^j - g||_n \leq \frac{\delta^2}{4\sigma}$. Consequently, we have

$$\begin{split} \left| \frac{1}{n} \sum_{i=1}^{n} w_i g(x_i) \right| &= \left| \frac{1}{n} \langle w, g(x_1^n) \rangle \right| \\ &\leq \left| \frac{1}{n} \langle w, g^j(x_1^n) \rangle \right| + \left| \frac{1}{n} \langle w, g(x_1^n) - g^j(x_1^n) \rangle \right| \\ &\leq \max_{j=1,\dots,M} \left| \frac{1}{n} \langle w, g^j(x_1^n) \rangle \right| + \sqrt{\frac{\|w\|_2^2}{n}} \sqrt{\frac{\|g(x_1^n) - g^j(x_1^n)\|_2^2}{n}} \\ &\leq \max_{j=1,\dots,M} \left| \frac{1}{n} \langle w, g^j(x_1^n) \rangle \right| + \frac{\|w\|_2}{\sqrt{n}} \frac{\delta^2}{4\sigma}. \end{split}$$

Taking the supremum over $g \in B_n(\delta)$ and the expectation with respect to w_i we have that:

$$G_n(\delta, \mathcal{F}^{\star}) \leq \mathbb{E}_w \left[\max_{j=1,\dots,M} \left| \frac{1}{n} \langle w, g^j(x_1^n) \rangle \right| \right] + \frac{\delta^2}{4\sigma} \\ \leq \frac{\delta}{\sqrt{n}} \sqrt{\log N_\delta \left(\frac{\delta^2}{4\sigma}\right)} + \frac{\delta^2}{4\sigma},$$

where the last step follows from the known bound on Gaussian maxima.

Actually using the chaining argument we are able to give a better bound:

Lemma 3.

$$\mathbb{E}\left[\max_{j=1,\dots,M}\left|\frac{1}{n}\langle w, g^j(x_1^n)\rangle\right|\right] \le \frac{16}{\sqrt{n}}\int_{\frac{\delta^2}{4\sigma}}^{\delta}\sqrt{\log N_{\delta}(t)}\,\mathrm{d}t.$$

Proof We prove this by using Dudley's integral bound with a slightly smarter look at the bounds we use. Start by defining $Z(g^j) := \frac{1}{\sqrt{n}} \sum_{i=1}^n w_i g^j(x_i)$ for j = 1, ..., M. Note that $Z(g^j)$ is zero-mean and sub-Gaussian with metric $\rho(g^j, g^k) = \|g^j - g^k\|_n$. Note that since $\{g^1, ..., g^M\}$ is a minimal $\frac{\delta^2}{4\sigma}$ -covering of $B_n(\delta)$, we don't need to extend the chaining smaller than a resolution of $\frac{\delta^2}{4\sigma}$ since at that resolution we can uniquely identify each point. We also only need to start the chaining at a resolution of δ , as the set $B_n(\delta)$ has a diameter of 2δ . Putting this together and working through the arithmetic of the chaining argument we get:

$$\mathbb{E}\left[\max_{j=1,\dots,M} \left|\frac{1}{n} \langle w, g^{j}(x_{1}^{n}) \rangle\right|\right] = \mathbb{E}\left[\max_{j=1,\dots,M} \frac{|Z(g^{j})|}{\sqrt{n}}\right]$$
$$= \frac{1}{\sqrt{n}} \mathbb{E}\left[\max_{j=1,\dots,M} |Z(g^{j})|\right]$$
$$\leq \frac{16}{\sqrt{n}} \int_{\frac{\delta^{2}}{4\sigma}}^{\delta} \sqrt{\log N_{\delta}(t)} \, \mathrm{d}t,$$

where for the last inequality we used a version of Dudley's integral bound that includes explicit constants.¹ $\hfill \Box$

Using Lemma 3 we have that:

$$G_n(\delta, \mathcal{F}^{\star}) \le \frac{16}{\sqrt{n}} \int_{\frac{\delta^2}{4\sigma}}^{\delta} \sqrt{\log N_{\delta}(t)} \, \mathrm{d}t + \frac{\delta^2}{4\sigma}$$

¹http://www.stat.cmu.edu/~arinaldo/Teaching/36755/F16/Scribed_Lectures/36755_F16_Nov02.pdf

$$\leq \frac{\delta^2}{2\sigma},$$

where the last step follows from the assumption of Theorem 2. It follows that

$$\frac{G_n(\delta, \mathcal{F}^{\star})}{\delta} \leq \frac{\delta}{2\sigma}$$

$$\Rightarrow \delta \geq \delta^{\star} := \min\left\{\delta' > 0 : \frac{G_n(\delta', \mathcal{F}^{\star})}{\delta'} \leq \frac{\delta'}{2\sigma}\right\}$$

as claimed.

Corollary 1. If

$$\int_{\delta^2/4\sigma}^{\delta} \sqrt{\log N_{\delta}(s)} \, \mathrm{d}s \lesssim \frac{\delta^2}{\sigma} \ and \ t \geq \delta$$

then $\left\|\hat{f} - f^{\star}\right\|_{n}^{2} \lesssim t\delta$ with probability at least $1 - e^{\frac{-nt\delta}{2\sigma^{2}}}$.

6 Applications

We look at several concrete applications of the above bounds.

6.1 Linear Regression $(n \ge d)$

As a warm-up, we start by considering the classic linear regression case, where

$$y_i = f^{\star}(x_i) + w_i = \langle \theta, x_i \rangle + w_i,$$

$$\mathcal{F} = \{ f_{\theta}(\cdot) = \langle \theta, \cdot \rangle : \theta \in \mathbb{R}^d \}.$$

Clearly $\mathcal{F} = \mathcal{F}^*$ is convex and star-shaped. We also have that $B_n(\delta)$ is isomorphic to the ball $\left\{ X\theta : \frac{\|X\theta\|_2}{\sqrt{n}} \leq \delta, \theta \in \mathbb{R}^d \right\} \subset \operatorname{range}(X)$, where $\operatorname{range}(X)$ has dimension at most d. So

$$\log N_{\delta}(s) \le \log N(s, B_2^d(\delta), \|\cdot\|_2)) \le d \log \left(1 + \frac{2\delta}{s}\right).$$

Hence

$$\begin{split} \frac{1}{\sqrt{n}} \int_0^{\delta} \sqrt{\log N_{\delta}(s)} \, \mathrm{d}s &\leq \sqrt{\frac{d}{n}} \int_0^{\delta} \sqrt{\log \left(1 + \frac{2\delta}{s}\right)} \, \mathrm{d}s \\ &\lesssim \delta \sqrt{\frac{d}{n}} \\ &\leq \delta^2 \qquad \text{for } \delta = \sqrt{\frac{d}{n}}. \end{split}$$

And by Corollary 1 we get

$$\left\|\hat{f} - f^{\star}\right\|_{n}^{2} = \frac{1}{n} \left\|X(\hat{\theta} - \theta^{\star})\right\|_{n}^{2} \lesssim \delta^{2} = \frac{d}{n}$$

with probability $\geq 1 - e^{-d/2}$. This bound is minimax optimal.

6.2 High-dimensional ℓ_q regression

We next consider a more complicated application, namely high-dimensions ℓ_q regression, where the function class is

$$\mathcal{F} = \left\{ f_{\theta}(\cdot) = \langle \theta, \cdot \rangle : \theta \in B_q^d(R) \right\} \quad \text{with}$$
$$B_q^d(R) := \left\{ \theta \in \mathbb{R}^d : \sum_{j=1}^d |\theta_j|^q \le R \right\}.$$

First consider q = 1 (i.e., Lasso). We have that \mathcal{F}^* is convex and star-shaped. When the columns of X have a norm bounded by \sqrt{n} , we can also show that

$$\log N_{\delta}(s) \lesssim \log N(s, B_1^d(R), \|\cdot\|_2) \lesssim R^2(\frac{1}{s})^2 \log d.$$

 \mathbf{So}

$$\frac{1}{\sqrt{n}} \int_{\frac{\delta^2}{4}}^{\delta} \sqrt{\log N_{\delta}(s)} \, \mathrm{d}s \lesssim R \sqrt{\frac{\log d}{n}} \int_{\frac{\delta^2}{4}}^{\delta} \frac{1}{s} \, \mathrm{d}s$$
$$= R \sqrt{\frac{\log d}{n}} \log \frac{4}{\delta}$$
$$\lesssim \delta^2 \qquad \text{for } \delta^2 = R \sqrt{\frac{\log d}{n}}$$

Hence by Corollary 1 we get $\left\| \hat{f} - f^* \right\|_n^2 \lesssim R(\frac{\log d}{n})$ with high probability. For general $q \in (0, 1)$, we can prove that $\left\| \hat{f} - f^* \right\|_n^2 \lesssim R(\frac{\log d}{n})^{1-q/2}$, which is minimax optimal.

6.3 Lipschitz Regression

The next class of functions we consider is a subset of Lipschitz functions.

$$\mathcal{F} = \{f: [0,1] \to \mathbb{R} : f(0) = 0, f \text{ is } L\text{-Lipschitz}\}.$$

We have that $\log N(\epsilon, \mathcal{F}, \|\cdot\|_{\infty}) \lesssim \frac{L}{\epsilon}$ as proved in Homework 1, and thus

$$\begin{split} \frac{1}{\sqrt{n}} \int_0^\delta \sqrt{\log N_\delta(s)} \, \mathrm{d}s &\leq \frac{1}{\sqrt{n}} \int_0^\delta \sqrt{\log N(s,\mathcal{F},\|\cdot\|_\infty)} \, \mathrm{d}s \\ &\lesssim \frac{1}{\sqrt{n}} \int_0^\delta \sqrt{\frac{L}{s}} \, \mathrm{d}s \\ &\lesssim \sqrt{\frac{L\delta}{n}} \\ &\lesssim \delta^2 \quad (\text{for } \delta = (\frac{L}{n})^{1/3}). \end{split}$$

By Corollary 1 we get $\left\|\hat{f} - f^{\star}\right\|_{n}^{2} \leq \left(\frac{L}{n}\right)^{2/3}$ with high probability, which is minimax optimal.

6.4 Convex Regression

Finally we look at the same set of functions as before with the added assumption of convexity:

$$\mathcal{F} = \{f : [0,1] \to \mathbb{R} : f(0) = 0, f \text{ is 1-Lipschitz and convex}\}$$

It can be shown that $\log N(\epsilon, \mathcal{F}, \|\cdot\|_{\infty}) \lesssim \sqrt{\frac{1}{\epsilon}}$. Then, by a similar argument as above we can take $\delta = (\frac{1}{n})^{2/5}$. Corollary 1 we get $\left\| \hat{f} - f^{\star} \right\|_{n}^{2} \lesssim (\frac{1}{n})^{4/5}$, which is minimax optimal. Note that this bound is better than the $(\frac{1}{n})^{2/3}$ bound for Lipschitz functions. This makes sense because the additional convexity assumption puts a constraint on the second derivative, whereas Lipschitz-ness just

bounds the first derivative.