ORIE 7790 High Dimensional Probability and Statistics Lecture 14-15-03/10,12/2020
Lectures 14-15: Nonparametric Regression
Lecturer: Yudong Chen
Scribe: Sean Sinclair, Connor Lawless

1 Brief Review

Last class we discussed the basics of statistical learning theory framework, using a symmetrization and contraction technique in order to upper bound the population risk by the Randemacher complexity. This week we focus on specializing the setting to non-parametric regression with noisy observations.

Reading: Sections 13.1 and 13.2 in the Wainwright textbook.

2 Problem Setup

Consider the general statistical learning theory set-up, where we observe datapoints $\left(x_{i}, y_{i}\right)_{i=1}^{n}$ where

$$
y_{i}=f^{\star}\left(x_{i}\right)+\sigma w_{i}
$$

and w_{i} are i.i.d. $\mathcal{N}(0,1)$ random variables. Here σ^{2} is the noise variance, $y_{i} \in \mathcal{Y}$ is the response variable, and $x_{i} \in \mathcal{X}$ are the covariates or features.
Remark Notice that f^{\star} minimizes the population risk or mean-squared error discussed last week, i.e.

$$
f^{\star}(\cdot)=\underset{f}{\arg \min } \mathbb{E}\left[(Y-f(X))^{2}\right]=\mathbb{E}[Y \mid X=\cdot],
$$

which is the Bayes optimal solution to minimize the expected mean squared error. Unfortunately the conditional distribution of y given x is not known, and so we settle for an approximation using the observed data.

We consider the constrained empirical risk minimizer, where we take our estimate to be

$$
\hat{f}=\underset{f \in \mathcal{F}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2},
$$

where \mathcal{F} is an user-specified function class.

3 Examples

The main difficulty in non-parametric regression is deciding on a function class \mathcal{F} to optimize over.

	\mid nonparametric	parametric
Approximate by	Kernel methods	Approximate with neural network
locally smoothing		Approximate with linear function

In general there is a spectrum of function classes that can be considered; see the figure above for an illustration. One side of the spectrum constitutes parametric models, where \mathcal{F} can be described by finitely many parameters. These are strong assumptions on the underlying function f^{\star}, but often lead to tighter guarantees which avoid the curse of dimensionality. The other side of the spectrum are nonparametric models, where \mathcal{F} is more complex, thus encompassing more models, but the bounds are sometimes worse. (Note: The picture above should be taken as just an crude illustration. A large neural network, for example, may correspond to a function class more complex than a simpler non-parametric model.)

We will focus on the non-parametric assumption, and give a guarantee that scales on a local complexity instead of a global complexity. We start with some parametric examples.

3.1 Linear Regression

Here we take the function class as

$$
\mathcal{F}_{C}=\left\{x \mapsto\langle\theta, x\rangle: \theta \in C \subseteq \mathbb{R}^{d}\right\}
$$

Some examples of this include ridge regression, where $C=\left\{\theta \in \mathbb{R}^{d}:\|\theta\|_{2} \leq R_{2}\right\}$, and ℓ_{1} regression/LASSO, where $C=\left\{\theta \in \mathbb{R}^{d}:\|\theta\|_{1} \leq R_{1}\right\}$. In general we can have ℓ_{q} regression, where the set C is the ℓ_{q} "ball":

$$
C=\left\{\theta \in \mathbb{R}^{d}: \sum_{j=1}^{d}\left|\theta_{j}\right|^{q} \leq R_{q}\right\}
$$

for some given number $q \in[0,2]$.
Next we will be looking at some nonparametric function classes. Some examples include the following.

3.2 Lipschitz Regression

In this setting we take the function class as

$$
\mathcal{F}_{\text {Lip }}(L)=\{f:[0,1] \rightarrow \mathbb{R} \mid f(0)=0, f \text { is } L \text {-Lipschitz }\}
$$

The optimal solution \hat{f} in this function class will be a piecewise linear approximation of the datapoints $\left(x_{i}, y_{i}\right)_{i=1}^{n}$.

3.3 Convex Regression

In this setting we take

$$
\mathcal{F}_{\text {conv }}=\{f:[0,1] \rightarrow \mathbb{R} \mid f \text { is convex }\}
$$

In this case we need to solve the following (apparently infinite dimensional) optimization problem

$$
\hat{f}=\underset{f \in \mathcal{F}_{\text {conv }}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

The solution to this optimization problem can be found numerically as follows.
Step 1: Solve the quadratic program

$$
\begin{aligned}
\min _{\left(\hat{y}_{i}, \hat{g}_{i}\right)_{i=1}^{n}} & \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
\text { s.t. } & \hat{y}_{j} \geq \hat{y}_{i}+\left\langle\hat{g}_{i}, x_{j}-x_{i}\right\rangle, \forall i, j=1, \ldots, n .
\end{aligned}
$$

These constraints arise because a convex function f satisfies the subgradient condition that $f\left(x_{j}\right) \geq$ $f\left(x_{i}\right)+\left\langle\nabla f\left(x_{i}\right), x_{j}-x_{i}\right\rangle$.

Step 2: Set the estimate

$$
\hat{f}(x)=\max _{i=1, \ldots, n}\left\{\hat{y}_{i}+\left\langle\hat{g}_{i}, x-x_{i}\right\rangle\right\} .
$$

Note that with this estimator we have that $\hat{f}\left(x_{i}\right)=\hat{y}_{i}$.
The two-step procedure above is equivalent to the original optimization problem, because the objective function of the latter only depends the values of f on the n data points x_{1}, \ldots, x_{n}.

3.4 Cubic Smoothing Spline

Here we take the function class as

$$
\mathcal{F}(R)=\left\{f:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1}\left(f^{\prime \prime}(x)\right)^{2} d x \leq R\right\}
$$

The solution \hat{f} is a natural cubic spline with knots at x_{1}, \ldots, x_{n}. This solution can be found by representing the function as a linear combination of certain basis functions

$$
\begin{aligned}
\hat{f}(x) & =\beta_{0}+\overline{\beta_{0}} x+\sum_{i=1}^{n} \beta_{i}\left(\phi_{i}(x)-\phi_{n-1}(x)\right), \quad \text { where } \\
\phi_{i}(x) & =\frac{\left(x-x_{i}\right)_{+}^{3}-\left(x-x_{n}\right)_{+}^{3}}{x_{n}-x_{i}}, \quad i=1, \ldots, n-1,
\end{aligned}
$$

and then solving for the parameters $\beta_{0}, \overline{\beta_{0}}, \beta_{1}, \ldots, \beta_{n}$ using standard least squares.

3.5 Kernel Ridge Regression

Here we solve the regularized ERM problem

$$
\hat{f}=\underset{f \in H}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda_{n}\|f\|_{H}^{2}
$$

where H is a Reproducing Kernel Hilbert Space (RKHS) with kernel $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$. We let $\langle\cdot, \cdot\rangle_{H}$ denote the inner product in H, which induces the norm $\|f\|_{H}^{2}=\langle f, f\rangle_{H}$. If we define the empirical kernel matrix $\hat{K} \in \mathbb{R}^{n \times n}$ with entries $\hat{K}_{i, j}=K\left(x_{i}, x_{j}\right) / n$, then the solution to the above problem is

$$
\begin{aligned}
\hat{f}(\cdot) & =\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{\alpha}_{i} K\left(\cdot, x_{i}\right), \quad \text { where } \\
\hat{\alpha} & =\left(\hat{K}+\lambda_{n} I_{n}\right)^{-1} \frac{y}{\sqrt{n}}
\end{aligned}
$$

4 Assumptions

We will focus on trying to bound the empirical error,

$$
\left\|f-f^{\star}\right\|_{n}^{2}:=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-f^{\star}\left(x_{i}\right)\right)^{2}
$$

Using techniques from the previous lectures you can convert this into bounds on the population error

$$
\left\|f-f^{\star}\right\|_{\mathcal{L}^{2}(\mu)}:=\mathbb{E}_{x \sim \mu}\left[\left(f(x)-f^{\star}(x)\right)^{2}\right]
$$

Before we start, we will need some definitions and assumptions on the function class \mathcal{F}.

Definition 1. The shifted function class is defined as $\mathcal{F}^{\star}:=\left\{f-f^{\star}: f \in \mathcal{F}\right\}$.
Assumption 1. We assume that the shifted function class \mathcal{F}^{\star} is star-shaped, i.e.,

$$
\forall h \in \mathcal{F}^{\star} \text { and } \alpha \in[0,1] \text { we have that } \alpha h \in \mathcal{F}^{\star} .
$$

Notice that under this assumption we have that $0 \in \mathcal{F}^{\star}$, which means that $f^{\star} \in \mathcal{F}$. Because we are considering non-parametric function classes this is a relatively mild assumption on the underlying datageneration process. Moreover, it is easy to see that if \mathcal{F} is convex then \mathcal{F}^{\star} is star-shaped; the converse is not true in general.

Definition 2. The localized Gaussian complexity of \mathcal{F}^{\star} is

$$
G_{n}\left(\delta, \mathcal{F}^{\star}\right):=\mathbb{E}\left[\sup _{g \in \mathcal{F}^{\star},\|g\|_{n} \leq \delta}\left|\frac{1}{n} \sum_{i=1}^{n} w_{i} g\left(x_{i}\right)\right|\right],
$$

where w_{i} are i.i.d. $\mathcal{N}(0,1)$. The number $\delta>0$ is said to be the radius you are measuring the Gaussian complexity of. The critical radius δ^{\star} is defined as

$$
\delta^{\star}:=\min _{\delta>0}\left\{\delta \left\lvert\, \frac{G_{n}\left(\delta, \mathcal{F}^{\star}\right)}{\delta} \leq \frac{\delta}{2 \sigma}\right.\right\} .
$$

With these notations, we have the following simple lemma:
Lemma 1. If \mathcal{F}^{\star} is star-shaped, then the function

$$
\delta \mapsto \frac{G_{n}\left(\delta, \mathcal{F}^{\star}\right)}{\delta}
$$

is non-increasing on $(0, \infty)$. Consequently, the critical radius δ^{\star} exists and is finite.
Proof Consider any $0<\delta<t$. We show that $G_{n}\left(t, \mathcal{F}^{\star}\right) / t \leq G_{n}\left(\delta, F^{\star}\right) / \delta$. This proof will crucially use the fact that \mathcal{F}^{\star} is star-shaped.

Consider any $h \in \mathcal{F}^{\star}$ such that $\|h\|_{n} \leq t$. Define the new function $\tilde{h}=\frac{\delta}{t} h$. Note that $\tilde{h} \in \mathcal{F}^{\star}$ as $\frac{\delta}{t} \leq 1$. Moreover, we have that

$$
\|\tilde{h}\|_{n}=\frac{\delta}{t}\|h\|_{n} \leq \delta .
$$

We also have that

$$
\frac{1}{n}\left(\frac{\delta}{t} \sum_{i=1}^{n} w_{i} h\left(x_{i}\right)\right)=\frac{1}{n} \sum_{i=1}^{n} w_{i} \tilde{h}\left(x_{i}\right) .
$$

Combining these two things together and taking the supremum over all $h \in \mathcal{F}^{\star}$ shows that

$$
\frac{\delta}{t} \mathbb{E}\left[\sup _{h \in \mathcal{F}^{\star},\|h\|_{n} \leq t} \frac{1}{n} \sum_{i=1}^{n} w_{i} h\left(x_{i}\right)\right] \leq \mathbb{E}\left[\sup _{\tilde{h} \in \mathcal{F}^{\star},\|\tilde{h}\|_{n} \leq \delta} \sum_{i=1}^{n} w_{i} \tilde{h}\left(x_{i}\right)\right]
$$

The left hand side is $(\delta / t) G_{n}\left(t, \mathcal{F}^{\star}\right)$ and the right hand side is $G_{n}\left(\delta, \mathcal{F}^{\star}\right)$ and hence

$$
\frac{G_{n}\left(t, \mathcal{F}^{\star}\right)}{t} \leq \frac{G_{n}\left(\delta, \mathcal{F}^{\star}\right)}{\delta}
$$

The existence of a finite critical radius δ^{\star} then follows immediately from the fact that the function is non-increasing and $\lim _{\delta \rightarrow 0} G_{n}\left(\delta, \mathcal{F}^{\star}\right) / \delta=\infty$.

5 Error Bound

We are now ready to prove an error bound on our ERM \hat{f} versus the true Bayes optimal solution f^{\star}.
Theorem 1. Suppose that \mathcal{F}^{\star} is star-shaped. Then for each number $t \geq \delta^{\star}$, we have

$$
\left\|\hat{f}-f^{\star}\right\|_{n}^{2} \leq 16 t \delta^{\star}
$$

with probability at least $1-e^{\frac{n t \delta^{\star}}{2 \sigma^{2}}}$.
Proof We start by noting that since \hat{f} is optimal to ERM, and f^{\star} is feasible we get that

$$
\begin{aligned}
& \frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-\hat{f}\left(x_{i}\right)\right)^{2} \leq \frac{1}{2 n} \sum_{i=1}^{n}\left(y_{i}-f^{\star}\left(x_{i}\right)\right)^{2} \\
& \left.\quad \Rightarrow \frac{1}{2}\left\|\hat{f}-f^{\star}\right\|_{n}^{2} \leq \frac{\sigma}{n} \sum_{i=1}^{n} w_{i}\left(\hat{f}\left(x_{i}\right)-f^{\star}\left(x_{i}\right)\right) . \quad \text { (Rearranging and using } y_{i}=f^{\star}\left(x_{i}\right)+\sigma w_{i}\right)
\end{aligned}
$$

Introducing the shorthand $\left.\Delta=f-f^{\star} \in \mathcal{F}^{\star}\right)$, we can rewrite the above inequality as

$$
\frac{1}{2}\|\Delta\|_{n}^{2} \leq \frac{\sigma}{n} \sum_{i=1}^{n} w_{i} \Delta\left(x_{i}\right)
$$

which is often referred to as the "Basic Inequality".
Since the left hand side is what we want to bound, we need to work on bounding the right-hand side. We start by defining the event

$$
A(u)=\left\{\exists g \in \mathcal{F}^{\star} \cap\left\{\|g\|_{n} \geq u\right\}:\left|\frac{\sigma}{n} \sum_{i=1}^{n} w_{i} g\left(x_{i}\right)\right| \geq 2\|g\|_{n} u\right\}
$$

for each number $u \geq \delta^{\star}$. Note that the complement of the event $A(u)$ is:

$$
A(u)^{c}=\left\{\forall g \in \mathcal{F}^{\star} \cap\left\{\|g\|_{n} \geq u\right\}:\left|\frac{\sigma}{n} \sum_{i=1}^{n} w_{i} g\left(x_{i}\right)\right|<2\|g\|_{n} u\right\}
$$

To finish our proof we make use of the following lemma which we'll prove later.
Lemma 2. For all $u \geq \delta^{\star}$ we have

$$
\operatorname{Pr}[A(u)] \leq e^{\frac{-n u^{2}}{2 \sigma^{2}}}
$$

With this lemma, we can set $u=\sqrt{t \delta^{\star}}$, where $t \geq \delta^{\star}$, and note that $\operatorname{Pr}\left[A\left(\sqrt{t \delta^{\star}}\right)^{c}\right] \geq 1-e^{\frac{-n t \delta^{\star}}{2 \sigma^{2}}}$. To conclude our proof we simply look at the two cases for $\|\Delta\|_{n}$. If $\|\Delta\|_{n} \leq \sqrt{t \delta^{\star}}$, then we're done as $\|\Delta\|_{n}^{2} \leq t \delta^{\star} \leq 16 t \delta^{\star}$. If $\|\Delta\|_{n}>\sqrt{t \delta^{\star}}$, then on the event $A\left(\sqrt{t \delta^{\star}}\right)^{c}$ we have that

$$
\frac{1}{2}\|\Delta\|_{n}^{2} \leq 2\|\Delta\|_{n} \sqrt{t \delta^{\star}} \Rightarrow\|\Delta\|_{n}^{2} \leq 16 t \delta^{\star}
$$

as claimed.

Now for the more involved part, proving Lemma 2.

Proof We start by rewriting $\operatorname{Pr}[A(u)]$ as follows:

$$
\begin{aligned}
\operatorname{Pr}[A(u)] & =\operatorname{Pr}\left[\sup _{g \in \mathcal{F}^{\star},\|g\|_{n} \geq u} \frac{1}{\|g\|_{n}}\left|\frac{\sigma}{n}\left\langle w, g\left(x_{1}^{n}\right)\right\rangle\right| \geq 2 u\right] \\
& \leq \operatorname{Pr}\left[\sup _{g \in \mathcal{F}^{\star},\|g\|_{n}=u}\left|\frac{\sigma}{n}\left\langle w, g\left(x_{1}^{n}\right)\right\rangle\right| \geq 2 u^{2}\right] \quad \quad \text { (rescale by } \frac{u}{\|g\|_{n}}, \mathcal{F}^{\star} \text { is star-shaped) } \\
& =\operatorname{Pr}\left[Z_{n}(u) \geq 2 u^{2}\right],
\end{aligned}
$$

where we define the random variable $Z_{n}(u):=\left|\frac{\sigma}{n}\left\langle w, g\left(x_{1}^{n}\right)\right\rangle\right|$.
Concentration: Start by noting that $Z_{n}(u)$ is a function of w with Lipschitz constant:

$$
L \leq \sup _{\|g\|_{n}=u} \frac{\sigma}{n}\left\|g\left(x_{1}^{n}\right)\right\|_{2}=\frac{\sigma}{n} \sqrt{n}\|g\|_{n}=\frac{\sigma u}{\sqrt{n}}
$$

Using the Gaussian Lipschitz concentration inequality we get:

$$
\operatorname{Pr}\left[Z_{n}(u) \geq \mathbb{E}\left[Z_{n}(u)\right]+u^{2}\right] \leq e^{\frac{-\left(u^{2}\right)^{2}}{2 \sigma^{2} u^{2} / n}}=e^{-\frac{u^{2} n}{2 \sigma^{2}}}
$$

Expectation Bound: We can see that $\mathbb{E}\left[Z_{n}(u)\right] \leq \sigma G_{n}\left(u, \mathcal{F}^{\star}\right)$. By Lemma 1 we know that the function $v \mapsto \frac{G_{n}\left(v, \mathcal{F}^{\star}\right)}{v}$ is non-increasing and by assumption we have $u \geq \delta^{\star}$. It follows that

$$
\frac{\sigma G_{n}\left(u, \mathcal{F}^{\star}\right)}{u} \leq \frac{\sigma G_{n}\left(\delta^{\star}, \mathcal{F}^{\star}\right)}{\delta^{\star}} \leq \frac{\delta^{\star}}{2} \leq \delta^{\star}
$$

and thus $\mathbb{E}\left[Z_{n}(u)\right] \leq \delta^{\star} u$.
Combining: we get

$$
\operatorname{Pr}\left[Z_{n}(u) \geq 2 u^{2}\right] \leq \operatorname{Pr}\left[Z_{n}(u) \geq u \delta^{\star}+u^{2}\right] \leq e^{-\frac{n u^{2}}{2 \sigma^{2}}}
$$

as claimed.

Now we have a way of bounding $\left\|\hat{f}-f^{\star}\right\|_{n}$ with δ^{\star}, the next step is to find a way to upper bound δ^{\star}. To start we introduce some notation.

Definition 3. We denote by $B_{n}(\delta)$ as the unit ball with respect to the $\|\cdot\|_{n}$ norm, i.e.,

$$
B_{n}(\delta)=\left\{h \in \mathcal{F}^{\star}:\|h\|_{n} \leq \delta\right\}
$$

Definition 4. We let $N_{\delta}(t)$ denote the covering number of $B_{n}(\delta)$, i.e.,

$$
N_{\delta}(t)=N\left(t, B_{n}(\delta),\|\cdot\|_{n}\right)
$$

Using the above definitions we can get the following theorem:
Theorem 2. If \mathcal{F}^{\star} is star-shaped, and a number $\delta \in[0, \sigma]$ satisfies

$$
\frac{16}{\sqrt{n}} \int_{\frac{\delta^{2}}{4 \sigma^{2}}}^{\delta} \sqrt{\log N_{\delta}(t)} \mathrm{d} t \leq \frac{\delta^{2}}{4 \sigma}
$$

then we have $\delta \geq \delta^{\star}$.

Proof Since $\delta \in[0, \sigma]$, we get that $\frac{\delta^{2}}{4 \sigma}<\delta$, where the RHS is the radius of $B_{n}(\delta)$. Let $\left\{g^{1}, \ldots, g^{M}\right\}$ be a minimal $\frac{\delta^{2}}{4 \sigma}$-covering of $B_{n}(\delta)$. So $\forall g \in B_{n}(\delta), \exists j$ s.t. $\left\|g^{j}-g\right\|_{n} \leq \frac{\delta^{2}}{4 \sigma}$. Consequently, we have

$$
\begin{aligned}
\left|\frac{1}{n} \sum_{i=1}^{n} w_{i} g\left(x_{i}\right)\right| & =\left|\frac{1}{n}\left\langle w, g\left(x_{1}^{n}\right)\right\rangle\right| \\
& \leq\left|\frac{1}{n}\left\langle w, g^{j}\left(x_{1}^{n}\right)\right\rangle\right|+\left|\frac{1}{n}\left\langle w, g\left(x_{1}^{n}\right)-g^{j}\left(x_{1}^{n}\right)\right\rangle\right| \\
& \leq \max _{j=1, \ldots, M}\left|\frac{1}{n}\left\langle w, g^{j}\left(x_{1}^{n}\right)\right\rangle\right|+\sqrt{\frac{\|w\|_{2}^{2}}{n}} \sqrt{\frac{\left\|g\left(x_{1}^{n}\right)-g^{j}\left(x_{1}^{n}\right)\right\|_{2}^{2}}{n}} \\
& \leq \max _{j=1, \ldots, M}\left|\frac{1}{n}\left\langle w, g^{j}\left(x_{1}^{n}\right)\right\rangle\right|+\frac{\|w\|_{2}}{\sqrt{n}} \frac{\delta^{2}}{4 \sigma} .
\end{aligned}
$$

Taking the supremum over $g \in B_{n}(\delta)$ and the expectation with respect to w_{i} we have that:

$$
\begin{aligned}
G_{n}\left(\delta, \mathcal{F}^{\star}\right) & \leq \mathbb{E}_{w}\left[\max _{j=1, \ldots, M}\left|\frac{1}{n}\left\langle w, g^{j}\left(x_{1}^{n}\right)\right\rangle\right|\right]+\frac{\delta^{2}}{4 \sigma} \\
& \leq \frac{\delta}{\sqrt{n}} \sqrt{\log N_{\delta}\left(\frac{\delta^{2}}{4 \sigma}\right)+\frac{\delta^{2}}{4 \sigma}}
\end{aligned}
$$

where the last step follows from the known bound on Gaussian maxima.
Actually using the chaining argument we are able to give a better bound:

Lemma 3.

$$
\mathbb{E}\left[\max _{j=1, \ldots, M}\left|\frac{1}{n}\left\langle w, g^{j}\left(x_{1}^{n}\right)\right\rangle\right|\right] \leq \frac{16}{\sqrt{n}} \int_{\frac{\delta^{2}}{4 \sigma}}^{\delta} \sqrt{\log N_{\delta}(t)} \mathrm{d} t .
$$

Proof We prove this by using Dudley's integral bound with a slightly smarter look at the bounds we use. Start by defining $Z\left(g^{j}\right):=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} w_{i} g^{j}\left(x_{i}\right)$ for $j=1, \ldots, M$. Note that $Z_{\left(g^{j}\right)}$ is zero-mean and sub-Gaussian with metric $\rho\left(g^{j}, g^{k}\right)=\left\|g^{j}-g^{k}\right\|_{n}$. Note that since $\left\{g^{1}, \ldots, g^{M}\right\}$ is a minimal $\frac{\delta^{2}}{4 \sigma}$-covering of $B_{n}(\delta)$, we don't need to extend the chaining smaller than a resolution of $\frac{\delta^{2}}{4 \sigma}$ since at that resolution we can uniquely identify each point. We also only need to start the chaining at a resolution of δ, as the set $B_{n}(\delta)$ has a diameter of 2δ. Putting this together and working through the arithmetic of the chaining argument we get:

$$
\begin{aligned}
\mathbb{E}\left[\max _{j=1, \ldots, M}\left|\frac{1}{n}\left\langle w, g^{j}\left(x_{1}^{n}\right)\right\rangle\right|\right] & =\mathbb{E}\left[\max _{j=1, \ldots, M} \frac{\left|Z\left(g^{j}\right)\right|}{\sqrt{n}}\right] \\
& =\frac{1}{\sqrt{n}} \mathbb{E}\left[\max _{j=1, \ldots, M}\left|Z\left(g^{j}\right)\right|\right] \\
& \leq \frac{16}{\sqrt{n}} \int_{\frac{\delta^{2}}{4 \sigma}}^{\delta} \sqrt{\log N_{\delta}(t)} \mathrm{d} t
\end{aligned}
$$

where for the last inequality we used a version of Dudley's integral bound that includes explicit constants. ${ }^{1}$

Using Lemma 3 we have that:

$$
G_{n}\left(\delta, \mathcal{F}^{\star}\right) \leq \frac{16}{\sqrt{n}} \int_{\frac{\delta^{2}}{4 \sigma}}^{\delta} \sqrt{\log N_{\delta}(t)} \mathrm{d} t+\frac{\delta^{2}}{4 \sigma}
$$

[^0]$$
\leq \frac{\delta^{2}}{2 \sigma}
$$
where the last step follows from the assumption of Theorem 2. It follows that
\[

$$
\begin{aligned}
& \frac{G_{n}\left(\delta, \mathcal{F}^{\star}\right)}{\delta} \leq \frac{\delta}{2 \sigma} \\
\Rightarrow & \delta \geq \delta^{\star}:=\min \left\{\delta^{\prime}>0: \frac{G_{n}\left(\delta^{\prime}, \mathcal{F}^{\star}\right)}{\delta^{\prime}} \leq \frac{\delta^{\prime}}{2 \sigma}\right\}
\end{aligned}
$$
\]

as claimed.

Combining Theorems 1 and 2, we have the following convenient corollary.
Corollary 1. If

$$
\int_{\delta^{2} / 4 \sigma}^{\delta} \sqrt{\log N_{\delta}(s)} \mathrm{d} s \lesssim \frac{\delta^{2}}{\sigma} \text { and } t \geq \delta
$$

then $\left\|\hat{f}-f^{\star}\right\|_{n}^{2} \lesssim t \delta$ with probability at least $1-e^{\frac{-n t \delta}{2 \sigma^{2}}}$.

6 Applications

We look at several concrete applications of the above bounds.

6.1 Linear Regression ($n \geq d$)

As a warm-up, we start by considering the classic linear regression case, where

$$
\begin{aligned}
y_{i} & =f^{\star}\left(x_{i}\right)+w_{i}=\left\langle\theta, x_{i}\right\rangle+w_{i} \\
\mathcal{F} & =\left\{f_{\theta}(\cdot)=\langle\theta, \cdot\rangle: \theta \in \mathbb{R}^{d}\right\}
\end{aligned}
$$

Clearly $\mathcal{F}=\mathcal{F}^{\star}$ is convex and star-shaped. We also have that $B_{n}(\delta)$ is isomorphic to the ball $\left\{X \theta: \frac{\|X \theta\|_{2}}{\sqrt{n}} \leq \delta, \theta \in \mathbb{R}^{d}\right\} \subset$ range (X), where range (X) has dimension at most d. So

$$
\left.\log N_{\delta}(s) \leq \log N\left(s, B_{2}^{d}(\delta),\|\cdot\|_{2}\right)\right) \leq d \log \left(1+\frac{2 \delta}{s}\right)
$$

Hence

$$
\begin{aligned}
\frac{1}{\sqrt{n}} \int_{0}^{\delta} \sqrt{\log N_{\delta}(s)} \mathrm{d} s & \leq \sqrt{\frac{d}{n}} \int_{0}^{\delta} \sqrt{\log \left(1+\frac{2 \delta}{s}\right)} \mathrm{d} s \\
& \lesssim \delta \sqrt{\frac{d}{n}} \\
& \leq \delta^{2} \quad \text { for } \delta=\sqrt{\frac{d}{n}}
\end{aligned}
$$

And by Corollary 1 we get

$$
\left\|\hat{f}-f^{\star}\right\|_{n}^{2}=\frac{1}{n}\left\|X\left(\hat{\theta}-\theta^{\star}\right)\right\|_{n}^{2} \lesssim \delta^{2}=\frac{d}{n}
$$

with probability $\geq 1-e^{-d / 2}$. This bound is minimax optimal.

6.2 High-dimensional ℓ_{q} regression

We next consider a more complicated application, namely high-dimensions ℓ_{q} regression, where the function class is

$$
\begin{aligned}
\mathcal{F} & =\left\{f_{\theta}(\cdot)=\langle\theta, \cdot\rangle: \theta \in B_{q}^{d}(R)\right\} \quad \text { with } \\
B_{q}^{d}(R) & :=\left\{\theta \in \mathbb{R}^{d}: \sum_{j=1}^{d}\left|\theta_{j}\right|^{q} \leq R\right\}
\end{aligned}
$$

First consider $q=1$ (i.e., Lasso). We have that \mathcal{F}^{\star} is convex and star-shaped. When the columns of X have a norm bounded by \sqrt{n}, we can also show that

$$
\log N_{\delta}(s) \lesssim \log N\left(s, B_{1}^{d}(R),\|\cdot\|_{2}\right) \lesssim R^{2}\left(\frac{1}{s}\right)^{2} \log d
$$

So

$$
\begin{aligned}
\frac{1}{\sqrt{n}} \int_{\frac{\delta^{2}}{4}}^{\delta} \sqrt{\log N_{\delta}(s)} \mathrm{d} s & \lesssim R \sqrt{\frac{\log d}{n}} \int_{\frac{\delta^{2}}{4}}^{\delta} \frac{1}{s} \mathrm{~d} s \\
& =R \sqrt{\frac{\log d}{n}} \log \frac{4}{\delta} \\
& \lesssim \delta^{2} \quad \text { for } \delta^{2}=R \sqrt{\frac{\log d}{n}}
\end{aligned}
$$

Hence by Corollary 1 we get $\left\|\hat{f}-f^{\star}\right\|_{n}^{2} \lesssim R\left(\frac{\log d}{n}\right)$ with high probability. For general $q \in(0,1)$, we can prove that $\left\|\hat{f}-f^{\star}\right\|_{n}^{2} \lesssim R\left(\frac{\log d}{n}\right)^{1-q / 2}$, which is minimax optimal.

6.3 Lipschitz Regression

The next class of functions we consider is a subset of Lipschitz functions.

$$
\mathcal{F}=\{f:[0,1] \rightarrow \mathbb{R}: f(0)=0, f \text { is } L \text {-Lipschitz }\}
$$

We have that $\log N\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right) \lesssim \frac{L}{\epsilon}$ as proved in Homework 1, and thus

$$
\begin{aligned}
\frac{1}{\sqrt{n}} \int_{0}^{\delta} \sqrt{\log N_{\delta}(s)} \mathrm{d} s & \left.\leq \frac{1}{\sqrt{n}} \int_{0}^{\delta} \sqrt{\log N\left(s, \mathcal{F},\|\cdot\|_{\infty}\right.}\right) \mathrm{d} s \\
& \lesssim \frac{1}{\sqrt{n}} \int_{0}^{\delta} \sqrt{\frac{L}{s}} \mathrm{~d} s \\
& \lesssim \sqrt{\frac{L \delta}{n}} \\
& \lesssim \delta^{2} \quad\left(\text { for } \delta=\left(\frac{L}{n}\right)^{1 / 3}\right) .
\end{aligned}
$$

By Corollary 1 we get $\left\|\hat{f}-f^{\star}\right\|_{n}^{2} \leq\left(\frac{L}{n}\right)^{2 / 3}$ with high probability, which is minimax optimal.

6.4 Convex Regression

Finally we look at the same set of functions as before with the added assumption of convexity:

$$
\mathcal{F}=\{f:[0,1] \rightarrow \mathbb{R}: f(0)=0, f \text { is } 1 \text {-Lipschitz and convex }\}
$$

It can be shown that $\log N\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right) \lesssim \sqrt{\frac{1}{\epsilon}}$. Then, by a similar argument as above we can take $\delta=\left(\frac{1}{n}\right)^{2 / 5}$. Corollary 1 we get $\left\|\hat{f}-f^{\star}\right\|_{n}^{2} \lesssim\left(\frac{1}{n}\right)^{4 / 5}$, which is minimax optimal.

Note that this bound is better than the $\left(\frac{1}{n}\right)^{2 / 3}$ bound for Lipschitz functions. This makes sense because the additional convexity assumption puts a constraint on the second derivative, whereas Lipschitz-ness just bounds the first derivative.

[^0]: ${ }^{1}$ http://www.stat.cmu.edu/~arinaldo/Teaching/36755/F16/Scribed_Lectures/36755_F16_Nov02.pdf

