ORIE 7790 High Dimensional Probability and Statistics Lecture 14-15 - 03/10,12/2020

Lectures 14-15: Nonparametric Regression

Lecturer: Yudong Chen Scribe: Sean Sinclair, Connor Lawless

1 Brief Review

Last class we discussed the basics of statistical learning theory framework, using a symmetrization and con-
traction technique in order to upper bound the population risk by the Randemacher complexity. This week
we focus on specializing the setting to non-parametric regression with noisy observations.

Reading: Sections 13.1 and 13.2 in the Wainwright textbook.

2 Problem Setup

Consider the general statistical learning theory set-up, where we observe datapoints (x;, y;)"_; where
yi = [ (x:) + ow;

and w; are i.i.d. N'(0,1) random variables. Here o2 is the noise variance, y; € ) is the response variable,
and z; € X are the covariates or features.
Remark Notice that f* minimizes the population risk or mean-squared error discussed last week, i.e.

)= arg;ninlE (Y - f(0))?] =E[Y | X =],
which is the Bayes optimal solution to minimize the expected mean squared error. Unfortunately the

conditional distribution of y given x is not known, and so we settle for an approximation using the observed
data.

We consider the constrained empirical risk minimizer, where we take our estimate to be

f = argmin = 3"y — f(@:)2,

fer i

where F is an user-specified function class.

3 Examples

The main difficulty in non-parametric regression is deciding on a function class F to optimize over.
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|
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In general there is a spectrum of function classes that can be considered; see the figure above for an
illustration. One side of the spectrum constitutes parametric models, where F can be described by finitely
many parameters. These are strong assumptions on the underlying function f*, but often lead to tighter
guarantees which avoid the curse of dimensionality. The other side of the spectrum are nonparametric
models, where F is more complex, thus encompassing more models, but the bounds are sometimes worse.
(Note: The picture above should be taken as just an crude illustration. A large neural network, for example,
may correspond to a function class more complex than a simpler non-parametric model.)

We will focus on the non-parametric assumption, and give a guarantee that scales on a local complexity
instead of a global complexity. We start with some parametric examples.

3.1 Linear Regression

Here we take the function class as
Fo={z— (0,z):0€ CCR}.

Some examples of this include ridge regression, where C' = {6 € R? : ||6]|,, < Ro}, and ¢; regression/LASSO,
where C = {# € R?: ||0]|, < R1}. In general we can have £, regression, where the set C is the £, “ball”:

d
C=10eR":> [0;]9<R,

j=1
for some given number ¢ € [0, 2].

Next we will be looking at some nonparametric function classes. Some examples include the following.

3.2 Lipschitz Regression

In this setting we take the function class as
Frip(L) ={f:[0,1] = R | f(0) =0, f is L-Lipschitz} .

The optimal solution f in this function class will be a piecewise linear approximation of the datapoints
(‘riayi)?‘:l'

3.3 Convex Regression

In this setting we take
Feonv = {f:[0,1] = R | f is convex}.
In this case we need to solve the following (apparently infinite dimensional) optimization problem

n

f= au“gminl z:(yZ — f(x:))%

fE€Feony M

The solution to this optimization problem can be found numerically as follows.
Step 1: Solve the quadratic program

. 1 .
min = (yi — )

(94,9i)1—, M =1

s.t. U5 Zgi+<gi7$j —$i>,Vi,j: 1,...,n.



These constraints arise because a convex function f satisfies the subgradient condition that f(z;) >
fx) + (Vf(z),x; — x3).
J
Step 2: Set the estimate

fz) = ,max {9 + (Gisz —x4) } -

ooy TV

Note that with this estimator we have that f(z;) = 4.
The two-step procedure above is equivalent to the original optimization problem, because the objective
function of the latter only depends the values of f on the n data points x1, ..., Z,.

3.4 Cubic Smoothing Spline

Here we take the function class as
1
F(R) = {f :10,1] = R | / (f"(x))%dx < R} .
0

The solution f is a natural cubic spline with knots at x1, ..., x,. This solution can be found by representing
the function as a linear combination of certain basis functions

f(@) = Bo + Box + Zﬂz(éﬁz(fﬂ) — ¢n-1(x)), where
i=1

(@ =2t~ (@ =20

bi(z) = , 1=1,...,n—1,
Tp — T4

and then solving for the parameters B, o, f1, - - ., Bn using standard least squares.

3.5 Kernel Ridge Regression
Here we solve the regularized ERM problem

n

f=argmin =S (g — F@)? + A £

n
feH i1

where H is a Reproducing Kernel Hilbert Space (RKHS) with kernel K : X x X — R. We let (-,-) g denote
the inner product in H, which induces the norm || f ||?{ = (f, /)u. If we define the empirical kernel matrix
K € R™™" with entries K; ; = K(x;,x;)/n, then the solution to the above problem is

f()= % iz:;diK("xi% where

=K+ I, !

BN

4 Assumptions

We will focus on trying to bound the empirical error,

17 = FI2 = S0 — )™

i=1

Using techniques from the previous lectures you can convert this into bounds on the population error

1F = £l = Eamp [(F@) = £*(@))?] -

Before we start, we will need some definitions and assumptions on the function class F.



Definition 1. The shifted function class is defined as F* :={f — f*: f € F}.

Assumption 1. We assume that the shifted function class F* is star-shaped, i.e.,
Vh € F* and o € [0, 1] we have that ah € F*.

Notice that under this assumption we have that 0 € F*, which means that f* € F. Because we are
considering non-parametric function classes this is a relatively mild assumption on the underlying data-
generation process. Moreover, it is easy to see that if F is convex then F* is star-shaped; the converse is
Definition 2. The localized Gaussian complexity of F* is

not true in general.
1 n
Dl
i=1

where w; are i.i.d. N'(0,1). The number 6 > 0 is said to be the radius you are measuring the Gaussian
complezity of. The critical radius §* is defined as

Gn(0,F*):=E sup
ge€F* llgll,, <6

5>0 1) = 2

5*::min{5|Gn(6’}-)< 0 }

With these notations, we have the following simple lemma:
Lemma 1. If F* is star-shaped, then the function

Gn (6) ‘F*)
5

is non-increasing on (0,00). Consequently, the critical radius 0* exists and is finite.

0 —

Proof Consider any 0 < § < t. We show that G, (¢, F*)/t < G, (6, F*)/6. This proof will crucially use
the fact that F* is star-shaped.

Consider any h € F* such that ||h||,, <t. Define the new function h= %h. Note that h € F* as S <1
Moreover, we have that

~ )
il =, <o
We also have that
1o I
- ;Zwih(xi) = Ezwih(mi)'
i=1 i=1
Combining these two things together and taking the supremum over all h € F* shows that

5 1 n n
-E sup - wih(z;)| <E sup w;h(x;)
t Lef*7|h|n<t n ; herr, ||M<5;
The left hand side is (§/t)G,, (¢, F*) and the right hand side is G,,(d, F*) and hence
G (t, F*) < G (6, F*)
t - b
The existence of a finite critical radius 6* then follows immediately from the fact that the function is
non-increasing and lims_,o G, (8, F*)/d = oc.

O



5 Error Bound

We are now ready to prove an error bound on our ERM f versus the true Bayes optimal solution f*.

Theorem 1. Suppose that F* is star-shaped. Then for each number t > §*, we have

Hfff* ig 16t6*

nts*

with probability at least 1 — e 207 .

Proof We start by noting that since f is optimal to ERM, and f* is feasible we get that

1 — X I & )
o i:1(yz' — fz))? < o ;(yi — fr(x:)?
. 2 " .
= % = . < %Zwi(f(xi) — [*(z)). (Rearranging and using y; = f*(x;) + ow;)
i=1

Introducing the shorthand A = f — f* € F*), we can rewrite the above inequality as
1 2 g ~
S 1812 < 23 wia@),
i=1

which is often referred to as the “Basic Inequality”.
Since the left hand side is what we want to bound, we need to work on bounding the right-hand side.
We start by defining the event
> 2||gll,, u}

for each number u > 0*. Note that the complement of the event A(u) is:

< 2|gnu}-

To finish our proof we make use of the following lemma which we’ll prove later.

Alw) = {ag e F 0 {lgl, = u} s |23 wigla)

Afu)° = {\fg e F* 0 {llgl, = w}: |2 > wiglas)

Lemma 2. For all u > 0* we have ,

—nu

PriA(u)] < e2.7 .

—nts*

With this lemma, we can set u = v/tdé*, where t > 0*, and note that Pr [A(\/té*)c} >1—e 27 .

To conclude our proof we simply look at the two cases for ||Al,,. If [|A],, < Vté*, then we're done as
HAHi < to* < 16t5*. If ||A|l,, > Vto*, then on the event A(vt6*)¢ we have that

1
5 1AIL < 2[A]l, Vier = A, < 16t6"

as claimed. ]

Now for the more involved part, proving Lemma 2.



Proof We start by rewriting Pr[A(u)] as follows:

1
Pr[A(u)] = Pr sup _— g(w,g(m?»' > 2u
geF~ gl =u llgll, 1n
<Pr sup g<w,g(x’f)>’ > 2u? (rescale by L, F* is star-shaped)
geF gl =u ' T lgll,,

= Pr [Z,(u) > 2u”],

where we define the random variable 7, (u) := |Z(w, g(z7))|.
Concentration: Start by noting that Z,(u) is a function of w with Lipschitz constant:

ag g agu
L< sup —|g(@)ll, = =vnlgll, = —=.
lol=um 2 n SRVD

3

Using the Gaussian Lipschitz concentration inequality we get:

—(u2)2 “2n

(
Pr[Z,(u) > E[Z,(u)] + u’] < e2%/n = e 22,

Expectation Bound: We can see that E[Z,(u)] < 0G,(u, F*). By Lemma 1 we know that the

Gn(v,F")
v

function v — is non-increasing and by assumption we have u > §*. It follows that

oGp(u, F*) < oG (6%, F*)
U - o*

5*
< — <6
<3 <94

and thus E [Z,, (u)] < 0*u.
Combining: we get

TL7L2

Pr[Z,(u) > 2u®] < Pr[Z,(u) > ud* +v’] < e 2.7

as claimed. O

with 6*, the next step is to find a way to upper bound §*.

Now we have a way of bounding Hf - f*

To start we introduce some notation.

Definition 3. We denote by By, (6) as the unit ball with respect to the ||-||,, norm, i.e.,
B, (0) ={h € F* : ||h]|, <6}
Definition 4. We let N5(t) denote the covering number of By (6), i.e.,
Ns(t) = N (t, Bu(9), Il )-
Using the above definitions we can get the following theorem:

Theorem 2. If F* is star-shaped, and a number 6 € [0, 0] satisfies
16 ' v/ 1o N(t)dt<ﬁ

then we have § > 6*.



Proof Since d € [0,0], we get that % < 6, where the RHS is the radius of B, (). Let {g,...,g™} be a
minimal ——coverlng of B,(8). So Vg € B,(d),3j s.t. ng — an < g. Consequently, we have

“’}E:Tﬂzg xz

= | (w,g(a))

1 1
< |, g @]+ |, 90D) - 1))
J
< max ‘fwg \/Ilwllz\/llg -9 5”1)“2
Jj=1,..
wll, 62

< —
—jr?aXM\ w,g (@ >>!+ i

Taking the supremum over g € B,(d) and the expectation with respect to w; we have that:

Gul6, ) < {mwﬂw9<»ﬂ+f

o
\/logN(;

where the last step follows from the known bound on Gaussian maxima.
Actually using the chaining argument we are able to give a better bound:

Lemma 3.

1 : 16 [°
— J n <
E L:mlj%‘nw,g (x1)>H < \/5/5 log Nj(t) dt.

Proof We prove this by using Dudley’s integral bound with a slightly smarter look at the bounds we
use. Start by defining Z(g7) := ﬁzz;l w;g’ (x;) for j = 1,..., M. Note that Zg’) is zero-mean and
sub-Gaussian with metric p(¢7, g*) = ||¢’ — ¢¥|| . Note that since {g*, .. ,gM} is a minimal & covermg of
B,(6), we don’t need to extend the chaining smaller than a resolution of 2 E since at that rebolutlon we can
uniquely identify each point. We also only need to start the chaining at a resolution of §, as the set B, (9)
has a diameter of 2. Putting this together and working through the arithmetic of the chaining argument

we get:

E| max
j=1,...M

0| =2 |,

— | max 120

16 [°
< — log N,
< U Jo ViETaa,

where for the last inequality we used a version of Dudley’s integral bound that includes explicit con-
stants.! 0

EEREE)

Using Lemma 3 we have that:

16 [0 Pk
< — log N, —
< \/ﬁ/ﬁ\/og SO+

Thttp://www.stat.cmu.edu/~arinaldo/Teaching/36755/F16/Scribed_Lectures/36755_F16_Nov02.pdf




where the last step follows from the assumption of Theorem 2. It follows that

G, ((5 F*) < i
20
n(d }'*) )
>0 :=m < —
=029 { o’ 20}

as claimed.

Combining Theorems 1 and 2, we have the following convenient corollary.
Corollary 1. If

6 52
/ Viog Ns(s)ds < — and t > 6
62 /40 g

771,15

< td with probability at least 1 — e 202

then H f-r

6 Applications

We look at several concrete applications of the above bounds.

6.1 Linear Regression (n > d)
As a warm-up, we start by considering the classic linear regression case, where
= f(xi) +wi = (0, 7;) + w,
F={fo()=(8,-) : 0 € R}.

Clearly F = F* is convex and star-shaped. We also have that B,,(d) is isomorphic to the ball {X 0:

range(X), where range(X) has dimension at most d. So

26
log Nj(s) < log N(s, B5(0), ||-ll5)) < dlog (1 + )

/de[/ \/1og ( 1+
<6
Ve

Hence

< 62 for § = g
n
And by Corollary 1 we get
~ 2 1 ~ 2 d
F=r| == |x0-0n| 2=
n n n n

with probability > 1 — e~%?2. This bound is minimax optimal.

Ixe|l,
Jn

gd,eeRd}C



6.2 High-dimensional /, regression

We next consider a more complicated application, namely high-dimensions ¢, regression, where the function
class is
F={fo()=1(0,-): 0 € B}(R)} with
d
BYR):=q0€R": D |0;|"<R

j=1

First consider ¢ = 1 (i.e., Lasso). We have that F* is convex and star-shaped. When the columns of X
have a norm bounded by y/n, we can also show that

1
log Ns(s) S log N(s, BY(R), |]) S R*(;)*log .

So

1/5 /log Ny (s) d <R1/10gd/61d
\/ﬁ% og Ns(s)ds < . %Ss

logd 4
log -

log d
<82 for 02 = Ry 282,

n

2
Hence by Corollary 1 we get < R(%) with high probability. For general g € (0, 1), we can prove

|F=r

2
< R(%)l_qm7 which is minimax optimal.
n

mme—ﬁ

6.3 Lipschitz Regression

The next class of functions we consider is a subset of Lipschitz functions.
F={f:]0,1] =2 R: f(0) =0, f is L-Lipschitz} .

We have that log N(e, F, ||| .) S £ as proved in Homework 1, and thus

s 5
%/0 \/logNg(s)dSS%/o \/1Iog N (s, F,|/l.)ds

1 5\F
< -
N\/ﬁ/o Sds
< JB
~ n
<52 (for6=(£)1/3).

n
. 2
By Corollary 1 we get Hf - I

< (£)%/3 with high probability, which is minimax optimal.



6.4 Convex Regression

Finally we look at the same set of functions as before with the added assumption of convexity:

F={f:]0,1] = R: f(0) =0, f is 1-Lipschitz and convex}
It can be shown that log N(e, F, |- || 1 Then, by a similar argument as above we can take

) <
5 = (,)2/5 Corollary 1 we get Hf f* 5 ( )4/ which is minimax optimal.

Note that this bound is better than the ( )2/3 bound for Lipschitz functions. This makes sense because
the additional convexity assumption puts a constraint on the second derivative, whereas Lipschitz-ness just
bounds the first derivative.

10



