
ORIE 7790 High Dimensional Probability and Statistics Lecture 14–15 - 03/10,12/2020

Lectures 14–15: Nonparametric Regression
Lecturer: Yudong Chen Scribe: Sean Sinclair, Connor Lawless

1 Brief Review

Last class we discussed the basics of statistical learning theory framework, using a symmetrization and con-
traction technique in order to upper bound the population risk by the Randemacher complexity. This week
we focus on specializing the setting to non-parametric regression with noisy observations.

Reading: Sections 13.1 and 13.2 in the Wainwright textbook.

2 Problem Setup

Consider the general statistical learning theory set-up, where we observe datapoints (xi, yi)
n
i=1 where

yi = f?(xi) + σwi

and wi are i.i.d. N (0, 1) random variables. Here σ2 is the noise variance, yi ∈ Y is the response variable,
and xi ∈ X are the covariates or features.
Remark Notice that f? minimizes the population risk or mean-squared error discussed last week, i.e.

f?(·) = arg min
f

E
[
(Y − f(X))2

]
= E [Y | X = ·] ,

which is the Bayes optimal solution to minimize the expected mean squared error. Unfortunately the
conditional distribution of y given x is not known, and so we settle for an approximation using the observed
data.

We consider the constrained empirical risk minimizer, where we take our estimate to be

f̂ = arg min
f∈F

1

n

n∑
i=1

(yi − f(xi))
2,

where F is an user-specified function class.

3 Examples

The main difficulty in non-parametric regression is deciding on a function class F to optimize over.
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In general there is a spectrum of function classes that can be considered; see the figure above for an
illustration. One side of the spectrum constitutes parametric models, where F can be described by finitely
many parameters. These are strong assumptions on the underlying function f?, but often lead to tighter
guarantees which avoid the curse of dimensionality. The other side of the spectrum are nonparametric
models, where F is more complex, thus encompassing more models, but the bounds are sometimes worse.
(Note: The picture above should be taken as just an crude illustration. A large neural network, for example,
may correspond to a function class more complex than a simpler non-parametric model.)

We will focus on the non-parametric assumption, and give a guarantee that scales on a local complexity
instead of a global complexity. We start with some parametric examples.

3.1 Linear Regression

Here we take the function class as

FC =
{
x 7→ 〈θ, x〉 : θ ∈ C ⊆ Rd

}
.

Some examples of this include ridge regression, where C = {θ ∈ Rd : ‖θ‖2 ≤ R2}, and `1 regression/LASSO,
where C = {θ ∈ Rd : ‖θ‖1 ≤ R1}. In general we can have `q regression, where the set C is the `q “ball”:

C =

θ ∈ Rd :

d∑
j=1

|θj |q ≤ Rq


for some given number q ∈ [0, 2].

Next we will be looking at some nonparametric function classes. Some examples include the following.

3.2 Lipschitz Regression

In this setting we take the function class as

FLip(L) = {f : [0, 1]→ R | f(0) = 0, f is L-Lipschitz} .

The optimal solution f̂ in this function class will be a piecewise linear approximation of the datapoints
(xi, yi)

n
i=1.

3.3 Convex Regression

In this setting we take
Fconv = {f : [0, 1]→ R | f is convex}.

In this case we need to solve the following (apparently infinite dimensional) optimization problem

f̂ = arg min
f∈Fconv

1

n

n∑
i=1

(yi − f(xi))
2.

The solution to this optimization problem can be found numerically as follows.
Step 1 : Solve the quadratic program

min
(ŷi,ĝi)ni=1

1

n

n∑
i=1

(yi − ŷi)2

s.t. ŷj ≥ ŷi + 〈ĝi, xj − xi〉, ∀i, j = 1, . . . , n.
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These constraints arise because a convex function f satisfies the subgradient condition that f(xj) ≥
f(xi) + 〈∇f(xi), xj − xi〉.

Step 2 : Set the estimate
f̂(x) = max

i=1,...,n
{ŷi + 〈ĝi, x− xi〉} .

Note that with this estimator we have that f̂(xi) = ŷi.
The two-step procedure above is equivalent to the original optimization problem, because the objective

function of the latter only depends the values of f on the n data points x1, . . . , xn.

3.4 Cubic Smoothing Spline

Here we take the function class as

F(R) =

{
f : [0, 1]→ R |

∫ 1

0

(f ′′(x))2dx ≤ R
}
.

The solution f̂ is a natural cubic spline with knots at x1, . . . , xn. This solution can be found by representing
the function as a linear combination of certain basis functions

f̂(x) = β0 + β0x+

n∑
i=1

βi(φi(x)− φn−1(x)), where

φi(x) =
(x− xi)3+ − (x− xn)3+

xn − xi
, i = 1, . . . , n− 1,

and then solving for the parameters β0, β0, β1, . . . , βn using standard least squares.

3.5 Kernel Ridge Regression

Here we solve the regularized ERM problem

f̂ = arg min
f∈H

1

n

n∑
i=1

(yi − f(xi))
2 + λn ‖f‖2H ,

where H is a Reproducing Kernel Hilbert Space (RKHS) with kernel K : X ×X → R. We let 〈·, ·〉H denote

the inner product in H, which induces the norm ‖f‖2H = 〈f, f〉H . If we define the empirical kernel matrix

K̂ ∈ Rn×n with entries K̂i,j = K(xi, xj)/n, then the solution to the above problem is

f̂(·) =
1√
n

n∑
i=1

α̂iK(·, xi), where

α̂ = (K̂ + λnIn)−1
y√
n
.

4 Assumptions

We will focus on trying to bound the empirical error,

‖f − f?‖2n :=
1

n

n∑
i=1

(f(xi)− f?(xi))2.

Using techniques from the previous lectures you can convert this into bounds on the population error

‖f − f?‖L2(µ) := Ex∼µ
[
(f(x)− f?(x))2

]
.

Before we start, we will need some definitions and assumptions on the function class F .
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Definition 1. The shifted function class is defined as F? := {f − f? : f ∈ F}.

Assumption 1. We assume that the shifted function class F? is star-shaped, i.e.,

∀h ∈ F? and α ∈ [0, 1] we have that αh ∈ F?.

Notice that under this assumption we have that 0 ∈ F?, which means that f? ∈ F . Because we are
considering non-parametric function classes this is a relatively mild assumption on the underlying data-
generation process. Moreover, it is easy to see that if F is convex then F? is star-shaped; the converse is
not true in general.

Definition 2. The localized Gaussian complexity of F? is

Gn(δ,F?) := E

[
sup

g∈F?,‖g‖n≤δ

∣∣∣∣∣ 1n
n∑
i=1

wig(xi)

∣∣∣∣∣
]
,

where wi are i.i.d. N (0, 1). The number δ > 0 is said to be the radius you are measuring the Gaussian
complexity of. The critical radius δ? is defined as

δ? := min
δ>0

{
δ | Gn(δ,F?)

δ
≤ δ

2σ

}
.

With these notations, we have the following simple lemma:

Lemma 1. If F? is star-shaped, then the function

δ 7→ Gn(δ,F?)
δ

is non-increasing on (0,∞). Consequently, the critical radius δ? exists and is finite.

Proof Consider any 0 < δ < t. We show that Gn(t,F?)/t ≤ Gn(δ, F ?)/δ. This proof will crucially use
the fact that F? is star-shaped.

Consider any h ∈ F? such that ‖h‖n ≤ t. Define the new function h̃ = δ
th. Note that h̃ ∈ F? as δ

t ≤ 1.
Moreover, we have that ∥∥∥h̃∥∥∥

n
=
δ

t
‖h‖n ≤ δ.

We also have that
1

n

(
δ

t

n∑
i=1

wih(xi)

)
=

1

n

n∑
i=1

wih̃(xi).

Combining these two things together and taking the supremum over all h ∈ F? shows that

δ

t
E

[
sup

h∈F?, ‖h‖n≤t

1

n

n∑
i=1

wih(xi)

]
≤ E

 sup
h̃∈F?,‖h̃‖

n
≤δ

n∑
i=1

wih̃(xi)

 .
The left hand side is (δ/t)Gn(t,F?) and the right hand side is Gn(δ,F?) and hence

Gn(t,F?)
t

≤ Gn(δ,F?)
δ

.

The existence of a finite critical radius δ? then follows immediately from the fact that the function is
non-increasing and limδ→0Gn(δ,F?)/δ =∞.
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5 Error Bound

We are now ready to prove an error bound on our ERM f̂ versus the true Bayes optimal solution f?.

Theorem 1. Suppose that F? is star-shaped. Then for each number t ≥ δ?, we have∥∥∥f̂ − f?∥∥∥2
n
≤ 16tδ?

with probability at least 1− e
ntδ?

2σ2 .

Proof We start by noting that since f̂ is optimal to ERM, and f? is feasible we get that

1

2n

n∑
i=1

(yi − f̂(xi))
2 ≤ 1

2n

n∑
i=1

(yi − f?(xi))2

⇒ 1

2

∥∥∥f̂ − f?∥∥∥2
n
≤ σ

n

n∑
i=1

wi(f̂(xi)− f?(xi)). (Rearranging and using yi = f?(xi) + σwi)

Introducing the shorthand ∆ = f − f? ∈ F?), we can rewrite the above inequality as

1

2
‖∆‖2n ≤

σ

n

n∑
i=1

wi∆(xi),

which is often referred to as the “Basic Inequality”.
Since the left hand side is what we want to bound, we need to work on bounding the right-hand side.

We start by defining the event

A(u) =

{
∃g ∈ F? ∩ {‖g‖n ≥ u} :

∣∣∣σ
n

n∑
i=1

wig(xi)
∣∣∣ ≥ 2 ‖g‖n u

}

for each number u ≥ δ?. Note that the complement of the event A(u) is:

A(u)c =

{
∀g ∈ F? ∩ {‖g‖n ≥ u} :

∣∣∣σ
n

n∑
i=1

wig(xi)
∣∣∣ < 2 ‖g‖n u

}
.

To finish our proof we make use of the following lemma which we’ll prove later.

Lemma 2. For all u ≥ δ? we have

Pr [A(u)] ≤ e
−nu2

2σ2 .

With this lemma, we can set u =
√
tδ?, where t ≥ δ?, and note that Pr

[
A(
√
tδ?)c

]
≥ 1 − e

−ntδ?

2σ2 .

To conclude our proof we simply look at the two cases for ‖∆‖n. If ‖∆‖n ≤
√
tδ?, then we’re done as

‖∆‖2n ≤ tδ? ≤ 16tδ?. If ‖∆‖n >
√
tδ?, then on the event A(

√
tδ?)c we have that

1

2
‖∆‖2n ≤ 2 ‖∆‖n

√
tδ? ⇒ ‖∆‖2n ≤ 16tδ?

as claimed.

Now for the more involved part, proving Lemma 2.
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Proof We start by rewriting Pr [A(u)] as follows:

Pr [A(u)] = Pr

[
sup

g∈F?,‖g‖n≥u

1

‖g‖n

∣∣∣σ
n
〈w, g(xn1 )〉

∣∣∣ ≥ 2u

]

≤ Pr

[
sup

g∈F?,‖g‖n=u

∣∣∣σ
n
〈w, g(xn1 )〉

∣∣∣ ≥ 2u2

]
(rescale by

u

‖g‖n
, F? is star-shaped)

= Pr
[
Zn(u) ≥ 2u2

]
,

where we define the random variable Zn(u) := |σn 〈w, g(xn1 )〉|.
Concentration: Start by noting that Zn(u) is a function of w with Lipschitz constant:

L ≤ sup
‖g‖n=u

σ

n
‖g(xn1 )‖2 =

σ

n

√
n ‖g‖n =

σu√
n
.

Using the Gaussian Lipschitz concentration inequality we get:

Pr
[
Zn(u) ≥ E [Zn(u)] + u2

]
≤ e

−(u2)2

2σ2u2/n = e−
u2n
2σ2 .

Expectation Bound: We can see that E [Zn(u)] ≤ σGn(u,F?). By Lemma 1 we know that the

function v 7→ Gn(v,F?)
v is non-increasing and by assumption we have u ≥ δ?. It follows that

σGn(u,F?)
u

≤ σGn(δ?,F?)
δ?

≤ δ?

2
≤ δ?

and thus E [Zn(u)] ≤ δ?u.
Combining: we get

Pr
[
Zn(u) ≥ 2u2

]
≤ Pr

[
Zn(u) ≥ uδ? + u2

]
≤ e−

nu2

2σ2

as claimed.

Now we have a way of bounding
∥∥∥f̂ − f?∥∥∥

n
with δ?, the next step is to find a way to upper bound δ?.

To start we introduce some notation.

Definition 3. We denote by Bn(δ) as the unit ball with respect to the ‖·‖n norm, i.e.,

Bn(δ) = {h ∈ F? : ‖h‖n ≤ δ}.

Definition 4. We let Nδ(t) denote the covering number of Bn(δ), i.e.,

Nδ(t) = N
(
t, Bn(δ), ‖·‖n

)
.

Using the above definitions we can get the following theorem:

Theorem 2. If F? is star-shaped, and a number δ ∈ [0, σ] satisfies

16√
n

∫ δ

δ2

4σ2

√
logNδ(t) dt ≤ δ2

4σ
,

then we have δ ≥ δ?.
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Proof Since δ ∈ [0, σ], we get that δ2

4σ < δ, where the RHS is the radius of Bn(δ). Let {g1, ..., gM} be a

minimal δ2

4σ -covering of Bn(δ). So ∀g ∈ Bn(δ),∃j s.t.
∥∥gj − g∥∥

n
≤ δ2

4σ . Consequently, we have∣∣∣ 1
n

n∑
i=1

wig(xi)
∣∣∣ =

∣∣∣ 1
n
〈w, g(xn1 )〉

∣∣∣
≤
∣∣∣ 1
n
〈w, gj(xn1 )〉

∣∣∣+
∣∣∣ 1
n
〈w, g(xn1 )− gj(xn1 )〉

∣∣∣
≤ max
j=1,...,M

∣∣∣ 1
n
〈w, gj(xn1 )〉

∣∣∣+

√
‖w‖22
n

√
‖g(xn1 )− gj(xn1 )‖22

n

≤ max
j=1,...,M

∣∣∣ 1
n
〈w, gj(xn1 )〉

∣∣∣+
‖w‖2√
n

δ2

4σ
.

Taking the supremum over g ∈ Bn(δ) and the expectation with respect to wi we have that:

Gn(δ,F?) ≤ Ew
[

max
j=1,...,M

∣∣∣ 1
n
〈w, gj(xn1 )〉

∣∣∣]+
δ2

4σ

≤ δ√
n

√
logNδ

( δ2
4σ

)
+
δ2

4σ
,

where the last step follows from the known bound on Gaussian maxima.
Actually using the chaining argument we are able to give a better bound:

Lemma 3.

E
[

max
j=1,...,M

∣∣∣∣ 1n 〈w, gj(xn1 )〉
∣∣∣∣] ≤ 16√

n

∫ δ

δ2

4σ

√
logNδ(t) dt.

Proof We prove this by using Dudley’s integral bound with a slightly smarter look at the bounds we
use. Start by defining Z(gj) := 1√

n

∑n
i=1 wig

j(xi) for j = 1, ...,M . Note that Z(g
j) is zero-mean and

sub-Gaussian with metric ρ(gj , gk) =
∥∥gj − gk∥∥

n
. Note that since {g1, ..., gM} is a minimal δ2

4σ -covering of

Bn(δ), we don’t need to extend the chaining smaller than a resolution of δ2

4σ since at that resolution we can
uniquely identify each point. We also only need to start the chaining at a resolution of δ, as the set Bn(δ)
has a diameter of 2δ. Putting this together and working through the arithmetic of the chaining argument
we get:

E
[

max
j=1,...,M

∣∣∣∣ 1n 〈w, gj(xn1 )〉
∣∣∣∣] = E

[
max

j=1,...,M

|Z(gj)|√
n

]
=

1√
n
E
[

max
j=1,...,M

|Z(gj)|
]

≤ 16√
n

∫ δ

δ2

4σ

√
logNδ(t) dt,

where for the last inequality we used a version of Dudley’s integral bound that includes explicit con-
stants.1

Using Lemma 3 we have that:

Gn(δ,F?) ≤ 16√
n

∫ δ

δ2

4σ

√
logNδ(t) dt+

δ2

4σ

1http://www.stat.cmu.edu/~arinaldo/Teaching/36755/F16/Scribed_Lectures/36755_F16_Nov02.pdf
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≤ δ2

2σ
,

where the last step follows from the assumption of Theorem 2. It follows that

Gn(δ,F?)
δ

≤ δ

2σ

⇒δ ≥ δ? := min

{
δ′ > 0 :

Gn(δ′,F?)
δ′

≤ δ′

2σ

}
as claimed.

Combining Theorems 1 and 2, we have the following convenient corollary.

Corollary 1. If ∫ δ

δ2/4σ

√
logNδ(s) ds .

δ2

σ
and t ≥ δ

then
∥∥∥f̂ − f?∥∥∥2

n
. tδ with probability at least 1− e

−ntδ
2σ2 .

6 Applications

We look at several concrete applications of the above bounds.

6.1 Linear Regression (n ≥ d)

As a warm-up, we start by considering the classic linear regression case, where

yi = f?(xi) + wi = 〈θ, xi〉+ wi,

F = {fθ(·) = 〈θ, ·〉 : θ ∈ Rd}.

Clearly F = F? is convex and star-shaped. We also have thatBn(δ) is isomorphic to the ball
{
Xθ :

‖Xθ‖2√
n
≤ δ, θ ∈ Rd

}
⊂

range(X), where range(X) has dimension at most d. So

logNδ(s) ≤ logN(s,Bd2 (δ), ‖·‖2)) ≤ d log (1 +
2δ

s
).

Hence

1√
n

∫ δ

0

√
logNδ(s) ds ≤

√
d

n

∫ δ

0

√
log (1 +

2δ

s
) ds

. δ

√
d

n

≤ δ2 for δ =

√
d

n
.

And by Corollary 1 we get ∥∥∥f̂ − f?∥∥∥2
n

=
1

n

∥∥∥X(θ̂ − θ?)
∥∥∥2
n
. δ2 =

d

n

with probability ≥ 1− e−d/2. This bound is minimax optimal.
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6.2 High-dimensional `q regression

We next consider a more complicated application, namely high-dimensions `q regression, where the function
class is

F =
{
fθ(·) = 〈θ, ·〉 : θ ∈ Bdq (R)

}
with

Bdq (R) :=

θ ∈ Rd :

d∑
j=1

|θj |q ≤ R

 .

First consider q = 1 (i.e., Lasso). We have that F? is convex and star-shaped. When the columns of X
have a norm bounded by

√
n, we can also show that

logNδ(s) . logN(s,Bd1 (R), ‖·‖2) . R2(
1

s
)2 log d.

So

1√
n

∫ δ

δ2

4

√
logNδ(s) ds . R

√
log d

n

∫ δ

δ2

4

1

s
ds

= R

√
log d

n
log

4

δ

. δ2 for δ2 = R

√
log d

n
.

Hence by Corollary 1 we get
∥∥∥f̂ − f?∥∥∥2

n
. R( log d

n ) with high probability. For general q ∈ (0, 1), we can prove

that
∥∥∥f̂ − f?∥∥∥2

n
. R( log d

n )1−q/2, which is minimax optimal.

6.3 Lipschitz Regression

The next class of functions we consider is a subset of Lipschitz functions.

F = {f : [0, 1]→ R : f(0) = 0, f is L-Lipschitz} .

We have that logN(ε,F , ‖·‖∞) . L
ε as proved in Homework 1, and thus

1√
n

∫ δ

0

√
logNδ(s) ds ≤ 1√

n

∫ δ

0

√
logN(s,F , ‖·‖∞) ds

.
1√
n

∫ δ

0

√
L

s
ds

.

√
Lδ

n

. δ2 (for δ = (
L

n
)1/3).

By Corollary 1 we get
∥∥∥f̂ − f?∥∥∥2

n
≤ (Ln )2/3 with high probability, which is minimax optimal.
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6.4 Convex Regression

Finally we look at the same set of functions as before with the added assumption of convexity:

F = {f : [0, 1]→ R : f(0) = 0, f is 1-Lipschitz and convex}

It can be shown that logN(ε,F , ‖·‖∞) .
√

1
ε . Then, by a similar argument as above we can take

δ = ( 1
n )2/5. Corollary 1 we get

∥∥∥f̂ − f?∥∥∥2
n
. ( 1

n )4/5, which is minimax optimal.

Note that this bound is better than the ( 1
n )2/3 bound for Lipschitz functions. This makes sense because

the additional convexity assumption puts a constraint on the second derivative, whereas Lipschitz-ness just
bounds the first derivative.
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