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1 Minimax Framework

We consider the following setting:

• A family of distributions: {Pθ : θ ∈ Θ}

• Observe X ∼ Pθ. We want to estimate θ.

• Estimator: θ̂(·). This is a measurable function of X.

Given metric ρ(Θ×Θ→ R+), define

• Wors-case risk for the estimator θ̂: supθ∈Θ E
[
ρ(θ̂(X), θ)

]
• Minimax risk: inf θ̂ supθ∈Θ E

[
ρ(θ̂(X), θ)

]
, where the infimum is over all estimators.

2 From Estimation to Testing

Consider a multiple test with M hypotheses: θ1, . . . , θM ∈ Θ. The test procedure is ψ(X) ∈ {1, 2, . . . ,M};
that is, given the data X, we pick hypothesis θψ(X).

Theorem 1. If {θ1, . . . , θM} is a 2δ-packing of Θ w.r.t. the metric ρ, then

inf
θ̂

sup
θ∈Θ

E
[
ρ(θ̂(X), θ)

]
≥ δ · inf

ψ

1

M

M∑
j=1

P[ψ(X) 6= j|Pθj ].

With this theorem, the problem of lower bounding the minimax risk reduces to bounding the average
test error on the RHS above. To this send, we will draw techniques from information theory.

3 Some Information Theory

We’ll give some definitions and related inequalities from information theory.

• Entropy: H(Q) , −
∫
q(x) log q(x)dx. Here q(·) is the density of the distribution Q.
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• Conditional Entropy: For (X,Y ) ∼ QX,Y ,

H(X|Y ) , EY [H(QX|Y )] = EY [−
∫
q(x|Y ) log q(x|Y )dx].

• (KL-Divergence): D(P ||Q) ,
∫
p(x) log p(x)

q(x)dx = EP [log p(X)
q(X) ].

• Mutual Information: (X,Y ) ∼ QX,Y ,

I(X,Y ) , D(QX,Y ||QX ·QY )

= H(X) +H(Y )−H(X,Y ) by definition

= H(Y )−H(Y |X). by chain rule below

Remark Note that entropy, KL and mutual information are all non-negative. The also satisfy the following
properties:

• (Conditioning reduces entropy) H(X|Y ) ≤ H(X).

• (Chain rule) H(X,Y ) = H(Y ) +H(X|Y ).

• (Chain rule) H(X,Y |Z) = H(Y |Z) +H(X|Y, Z).

4 Fano’s method

Assume that the index J for the true hypothesis is sampled uniformly from {1, 2, . . . ,M} and that X|J=j ∼
Pθj .

Theorem 2 (Fano’s Inequality). For any text procedure ψ, we have

P [ψ(X) 6= J ] ≥ 1− I(X; J) + log 2

logM
.

Proof Let qe , P [ψ(X) 6= J ] be the error probably and h(qe) , −qe log(qe) = (1− qe) log(1− qe) be the
(binary) entropy of Bernoulli(qe). The proof contains two steps:

1. Show that h(qe) + qe logM ≥ H(J |X).

2. Show that inequality above implies Fano’s inequality.

Step 1: Define the indicator random variable V , 1{ψ(X)6=J}. We have V ∼ Ber(qe), H(V ) = h(qe).
The key idea is to decompose the entropy H(V, J |X) in two ways using the chain rule:

H(V, J |X) =

H(J |X) +H(V |J,X)
(i)
= H(J |X),

H(V |X) +H(J |V,X)
(ii)

≤ h(qe) +H(J |V,X).

Step (i) holds because V is determined by J,X and hence H(V |J,X) = 0. Step 2 holds because conditioning
reduces entropy.

Note that by definition of entropy, we have

H(J |V,X) = P [V = 1]H(J |V = 1, X) + P [V = 0]H(J |V = 0, X) ≤ qe logM
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The last inequality holds due to the following observations: (a) when V = 0, J is known given X, so
H(J |V = 0, X) = 0; (b) H(J |V = 1, X) ≤ logM since the uniform distribution maximizes entropy.

Combing pieces, we get the desired inequality:

H(J |X) ≤ h(qe) + qe logM

Step 2: Using the alternative expression for the mutual information, we have

H(J |X) = H(J)− I(X, J) = logM − I(X,J).

Combining with Step 1, we get

qe ≥ 1− I(X, J) + h(qe)

logM
≥ 1− I(X, J) + log 2

M
,

thereby proving the Fano’s inequality.

Combining Theorem 1 and 2, we can develop the so called ”local” Fano’s method by using a particular
upper bound on the mutual information I(X, J). In particular, letting QX := 1

M

∑M
i=1 Pθi be the marginal

distribution of X, we have

I(X, J) = D(QX,J ||QX ·QJ)

=
1

M

M∑
j=1

D(Pθj ||QX)

(i)

≤ 1

M2

∑
i,j

D(Pθj ||Pθi)

≤ max
i,j

D(Pθj ||Pθi),

where step (i) follows from the convexity of KL and Jensen’s Inequality. Therefore, we have the following
corollary:

Corollary 1 (Local Fano’s Method). Let {θ1, . . . , θM} be 2δ-packing of Θ satisfying

max
i,j

D(Pθi ||Pθj ) ≤ g(δ).

Then we have

inf
θ̂

sup
θ∈Θ

E
[
ρ(θ̂(X), θ)

]
≥ δ
(
1− g(δ) + log 2

logM

)
.

In the next lecture, we will apply Corollary 1 to concrete statistical problems.
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