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In last lecture, we developed the following ”local” Fano’s method (Corollary 1 therein) for lower boundign
the minimax risk of an estimation problem:

inf supE[ρ(θ̂, θ)] ≥ δ · inf
ψ

1

M

M∑
j=1

P(ψ(X) 6= jPθj ) reduce estimation to testing

≥ δ · inf
ψ

{
1− I(X; J) + log 2

logM

}
Fano’s Inequality

≥ δ · inf
ψ

{
1−

1
M2

∑
i,j D(Pθi ||Pθj )
logM

}
Local Fano’s (1)

Here {θj , j = 1, . . . .M} is a 2δ packing of the parameter space Θ, whose pairwise KL divergences Pθi ||Pθj )
can be uniformly upper bounded (hence a local packing of Θ).

In this lecture, we will discuss three applications of the local Fano’s method in statistical problems.

1 Low-dimensional Linear Regression

Here, we consider the following regression problem set-up,

y = Xθ + e, X ∈ Rn×d, e ∼ N(0, σ2I), θ ∈ Θ,

where X ∈ Rn×d is a fixed covariate, d the number of parameters, n the sample size, and e the additive
noise. We focus on the low dimensional setting where n > d. Note that Pθ = N(Xθ, σ2I).

To apply the local Fano’s method, we consider the subset1

Θ0 := {θ ∈ Rd : ‖θ‖2 ≤ 4δ
√
n}.

Let {θ1, . . . , θM} be a 2δ
√
n-packing of Θ0 w.r.t. the metric ρ = ‖ · ‖2. We know that the packing number

satisfiesM ≡M(2δ
√
n,Θ0, `2) = M( 1

2 ,B
d
2, `2) ≥ 2d. Moreover, the pairwise KL can be bounded as

D(Pθi‖Pθj ) = D
(
N(Xθi, σ

2I)‖N(Xθj , σ
2I)
)

=
1

2σ2
‖Xθi −Xθj‖22

≤ 1

2σ2
‖X‖2op‖θi − θj‖22

≤ 1

2σ2
‖X‖2op(4δ

√
n+ 4δ

√
n)2 =

32

σ2
‖X‖2op · δ2n.

Note that the inequality on the last line holds due to triangle inequality and the fact that θi, θj have norm
upper bounded by 4δ

√
n local packing Θ0,

‖θi − θj‖2 ≤ ‖θi‖2 + ‖θj‖2 ≤ 4δ
√
n+ 4δ

√
n.

1Note that here, when determining the local subset to pack, ‖θ‖2 ≤ D, the value D is often chosen later in such a way that
we the RHS of the local Fano’s bound (1) is at least 1

2
δ
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Recall Corollary 1 from last lecture: if {θi, i = 1, . . .M} is a 2δ-packing of Θ and maxi,j D(θi‖θj) ≤ g(δ),
then we have

inf
θ̂

sup
θ∈Θ

EPθ [ρ(θ̂(x), θ)] ≥ δ
(

1− g(δ) + log 2

logM

)
.

Here, we have g(δ) = 32
σ2 ‖X‖2op · δ2n, hence

inf
θ̂

sup
θ∈Rd

E‖θ̂ − θ‖2 ≥ 2δ
√
n

(
1−

32
σ2 ‖X‖2op · δ2n

log 2d

)
.

Choose δ2 = σ2

64 ·
d
n ·

1
‖X‖op , we have

inf
θ̂

sup
θ∈Rd

E‖θ̂ − θ‖2 &
σ

‖X‖op

√
d.

The above bound holds for any fixed covariate matrix X. If in addition we assume that Xij
iid∼ N(0, 1),

then ‖X‖op .
√
d +
√
n ≤ 2

√
n holds with high probability, as n > d under current set up, we can further

simplify RHS of above relationship and arrive at

inf
θ̂

sup
θ∈Rd

E‖θ̂ − θ‖2 & σ

√
d

n
.

This lower bound shows that the standard least-squares estimator is minimax optimal (up to a multiplicative
constant) under this setting.

2 Sparse Regression in High Dimension

Similarly to the previous section, here we still have y = Xθ + e, but now we restrict to the set of sparse
vectors Θ = {θ ∈ Rd, ‖θ‖0 ≤ s}, with s controlling the sparsity.

We consider the subset Θ0 = {θ ∈ Rd : ‖θ‖0 ≤ s, ‖θ‖2 ≤ 1}, which is the `2 ball intersecting the
set of sparse vectors. To locally pack this subset, we utilize following lemma, which often appears in
Information/Coding Theory.

Lemma 1 (Sparse Gilbert-Varshamov). Suppose s ≤ d
8 . There exist a set of binary vectors w1, . . . , wM ∈

{0, 1}d such that

1. ‖wi − wj‖0 ≥ s
2 ,∀i 6= j,

2. ‖wi‖0 = s,∀i,

3. M ≥ ( d2s )
s
8 .

Proof Here is a sketch of proof utilizing the probabilistic method. Take wi
iid∼ Unif

{
w ∈ {0, 1}d : ‖w‖0 = s

}
.

Then P
(
property (i) and (ii) hold

)
> 0 as long as M = ( d2s )

s
8 . This non-zero probability implies the

existence of a set of vectors satisfying the above three properties.

Now take θi = wi√
s
, i = 1, . . . ,M . One can verify that {θ1, . . . , θM} forms a 1

2 -packing of Θ0 = {‖θ‖0 ≤
s, ‖θ‖2 ≤ 1}, with

1. ‖θi − θj‖2 = 1√
s
‖wi − wj‖2 = 1√

s

√
‖wi − wj‖0 ≥ 1

2 , and

2. ‖θi‖2 = 1√
s
‖wi‖2 = 1√

s

√
‖wi‖0 = 1.
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Then by re-scaling, we have a 2δ-packing satisfying ‖θi − θj‖ ≤ 8δ, whence

D(Pθi‖Pθj ) =
1

2σ2
‖X(θi − θj)‖22

≤ 1

2σ2
max
|T |=2s

{
1

n
‖XT ‖2op

}
‖θi − θj‖22 · n

≤ 1

2σ2
γ2 · 64δ2n, for γ = max

|T |=2s

{
1

n
‖XT ‖2op

}
=

32γ2

σ2
δ2n.

Applying Corollary 1 from previous Lecture, we obtain that

inf
θ̂

sup
θ∈Θ

E‖θ̂ − θ‖2 ≥ 2δ ·

(
1−

32γ2

σ2 δ2n

log( d2s )
s
8

)
.

Choosing δ2 = 1
n ·

σ2

64γ2 · s8 log( d2s ), we see thta the above inequality becomes

inf
θ̂

sup
θ∈Θ

E‖θ̂ − θ‖2 &
σ

γ

√
s · log d

s

n

Again, the above bound holds for any fixed X. If we have Gaussian X, which satisfies γ ≤ 3
2 with high

probability due to RIP (see Lectures 16 and 17 on Sparse Regression), we can continue simplify RHS and
arrive at

inf
θ̂

sup
θ∈Θ

E‖θ̂ − θ‖2 & σ

√
s · log d

s

n
.

Comparing with bounds for Lasso from previous lecture, that

E‖θ̂Lasso − θ‖ . σ

√
s log d

n
,

we can conclude that Lasso is (almost) minimax optimal, especially when s� d⇒ log d � log d
s .

3 Matrix Completion

We have previously discussed matrix completion problem in the lecture on random matrix theory when we
covered the matrix Bernstein’s inequality. Here we revisit this problem again and we would like to examine
whether the estimator developed therein is minimax optimal.

Here is the set up. Let G ∈ [−1, 1]d×d be an unknown rank-1 matrix. For each (i, j) ∈ [d] × [d], we

observe Yij = XijGij + eij , with Xij
iid∼ Ber(p)2 and eij

iid∼ N(0, 1). Given Y , we would like to estimate G.

Claim 1. There exists a δd
2 -packing {G1, . . . , GM} of [−δ, δ]d×d in ‖ · ‖F with ‖Gi‖F ≤ δd and logM & d.

Proof Take {w1, . . . , wM} ∈ {0, 1}d from Gilbert-Varshamov Lemma, and then we shift the vector to
obtain ui = wi − 1

2 ∈ {−
1
2 ,

1
2}
d, which are Rademacher-like vectors. Then let Gi = uiu

T
i . We can check

these vectors satisfy above properties.

2Xij is called the mask matrix, which means that it reveals the entry Gij with probability p; otherwise, we observe 0 and
do not see the entry.

3



By Theorem 1 from last lecture (estimation to testing), we have

inf
Ĝ

sup
G

E‖Ĝ−G‖F & δ · d · inf
ψ

1

M

M∑
j=1

P(ψ(Y ) 6= j|Gj)

= δ · d · inf
ψ

P(ψ(Y ) 6= J), J ∼ Unif{1, . . . ,M}

= δ · d · inf
ψ

EX [P(ψ(Y ) 6= J)|X] .

Note that Y |X,Gj ∼ N(X ◦Gj , 1) (d2-dimensional Gaussian), with ◦ represents element-wise multiplication.
Then, for each fixed X, by equation (1) (Fano’s inequality followed by upper bound on mutual information
using KL-divergence), we have

P(ψ(Y ) 6= J |X) ≥ 1−
1
M2

∑M
i,j=1D

(
N(X ◦Gi)‖N(X ◦Gj)

)
logM

= 1−
1
M2

∑M
i,j=1 ‖X ◦Gi −X ◦Gj‖2F

logM
.

Taking expectation w.r.t. X and by linearity of expectation, we have

EX [P(ψ(Y ) 6= J |X)] ≥ 1−
1
M2

∑M
i,j=1 EX [‖X ◦Gi −X ◦Gj‖2F ]

logM
(2)

Notice that

Ex
[
‖X ◦Gi −X ◦Gj‖2F

]
= Ex

∑
u,v

X2
uv(G

i
uv −Gjuv)2) = p · ‖Gi −Gi‖2F ≤ p · (2δd)2 = 4pδ2d2.

Substituting above relationship into equation (2), we obtain that

P(ψ(Y ) 6= J |X) ≥ 1−
p
M2

∑M
i,j=1 ‖Gi −Gj‖2F

logM
≥ 1− 4pδ2d2

d
= 1− 4pdδ2.

Take δ =
√

1
8pd and we arrive at infĜ supG ‖Ĝ−G‖F & δd �

√
d
p .

The above result can be generalized to the rank-r, in which case we have the minimax lower bound

inf
Ĝ

sup
G
‖Ĝ−G‖F &

√
rd

p
.

In Lecture 9, we used matrix Bernstein’s inequality to show that the singular value thresholding estimator
satisfies the error bound

‖Ĝ−G‖F .

√
rd log d

p
.

We see that this estimator is minimax optimal up to a log d factor.
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