> ORIE 7790 High Dimensional Probability and Statistics Lecture $20-04 / 23 / 2020$
> Lecture 20: Minimax Lower Bounds - Global Fano's Method
> Lecturer: Yudong Chen
> Scribe: Xumei Xi

1 Recap: Local Fano's Method

Recall the two key theorems from previous lectures.
Theorem 1 (Estimation to testing). If $\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{M}\right\}$ is a 2δ-packing of parameter space Θ in $\rho(\cdot, \cdot)$, then

$$
\begin{equation*}
\inf _{\hat{\theta}} \sup _{\theta \in \Theta} \mathbb{E}_{\mathbb{P}_{\theta}}[\rho(\hat{\theta}(X), \theta)] \geq \delta \inf _{\psi} \frac{1}{M} \sum_{j=1}^{M} \mathbb{P}\left[\psi(X) \neq j \mid \mathbb{P}_{\theta_{j}}\right] \tag{1}
\end{equation*}
$$

Theorem 2 (Fano's inequality). For any testing procedure ψ, we have

$$
\begin{equation*}
\mathbb{P}[\psi(X) \neq J] \geq 1-\frac{I(X ; J)+\log 2}{\log M} \tag{2}
\end{equation*}
$$

In the local Fano's method, we upper bound the mutual information by the maximum of pairwise KLdivergence,

$$
I(X ; J) \leq \max _{i, j} D\left(\mathbb{P}_{\theta_{i}} \| \mathbb{P}_{\theta_{j}}\right) \leq g(\delta)
$$

This upper bound, based on convexity of KL, is relatively crude and not tight under some settings, especially for non-parametric problems. In particular, with this upper bound we only makes use of a local packing of Θ. In order to capture the full capacity of the entire parameter space, we will develop the so-called global Fano's method.

2 Global Fano's method

The global Fano's method is based on the following better upper bound on the mutual information.

2.1 Yang-Barron's upper bound

Lemma 1 (Yang-Barron's upper bound). Let $N_{\mathrm{KL}}(\varepsilon, \Theta)$ denote the ε-covering number of Θ in the pseudodistance $\rho_{\mathrm{KL}}\left(\theta, \theta^{\prime}\right):=\sqrt{D\left(\mathbb{P}_{\theta} \| \mathbb{P}_{\theta^{\prime}}\right)}$. Then we have

$$
\begin{equation*}
I(X ; J) \leq \varepsilon^{2}+\log N_{\mathrm{KL}}(\varepsilon, \Theta), \quad \forall \epsilon>0 \tag{3}
\end{equation*}
$$

Proof Recall the notation $Q_{X}:=\frac{1}{M} \sum_{j=1}^{M} \mathbb{P}_{\theta_{i}}$ for the marginal distribution of X. Then for any distribution of X, denoted by Q^{\prime}, we have

$$
\begin{array}{rlr}
I(X ; J) & =\frac{1}{M} \sum_{j=1}^{M} D\left(\mathbb{P}_{\theta_{j}} \| Q_{X}\right) & \\
& \text { definition of KL } \\
& \leq \frac{1}{M} \sum_{j=1}^{M} D\left(\mathbb{P}_{\theta_{j}} \| Q^{\prime}\right), & \text { the mixture distribution } Q_{X} \text { minimizes the average KL } \tag{4}\\
& \leq \max _{j=1, \ldots, M} D\left(\mathbb{P}_{\theta_{j}} \| Q^{\prime}\right) . &
\end{array}
$$

Note that the second step above is an analogue of the fact that

$$
\underset{\theta^{\prime}}{\arg \min }\left\{\frac{1}{M} \sum_{j=1}^{M}\left\|\theta_{j}-\theta^{\prime}\right\|_{2}^{2}\right\}=\frac{1}{M} \sum_{j=1}^{M} \theta_{j}
$$

Let $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right\}$ be a minimal ε-covering of Θ w.r.t. ρ_{KL}, where $N=N_{\mathrm{KL}}(\varepsilon, \Theta)$. Note that we are free to choose any Q^{\prime}. Here we set $Q^{\prime}=\frac{1}{N} \sum_{\ell=1}^{N} \mathbb{P}_{\beta_{\ell}}$.

Fix an arbitrary index $j \in\{1,2, \ldots, M\}$. By definition of ε-covering, there exists some β_{i} such that $\rho_{\mathrm{KL}}\left(\theta_{j}, \beta_{i}\right) \leq \varepsilon$. We therefore have

$$
\begin{array}{rlrl}
D\left(\mathbb{P}_{\theta_{j}} \| Q^{\prime}\right) & =\mathbb{E}_{\mathbb{P}_{\theta_{j}}}\left[\log \frac{\mathrm{~d} \mathbb{P}_{\theta_{j}}}{\frac{1}{N} \sum_{l=1}^{N} \mathrm{~d}_{\beta_{l}}}\right], & & \mathrm{d} \mathbb{P}_{\theta_{j}} \text { denotes the density of } \mathbb{P}_{\theta_{j}} \\
& \leq \mathbb{E}_{\mathbb{P}_{\theta_{j}}}\left[\log \frac{\mathrm{~d}_{\theta_{j}}}{\frac{1}{N} d \mathbb{P}_{\beta_{i}}}\right] & & \text { sum of } N \text { terms is lower bounded by any one term } \\
& =D\left(\mathbb{P}_{\theta_{j}} \| \mathbb{P}_{\beta_{i}}\right)+\log N & & \\
& \leq \varepsilon^{2}+\log N . &
\end{array}
$$

Combining this upper bound (valid for all $j=1,2, \ldots, M$) with equation (4) gives the desired inequality $I(X ; J) \leq \varepsilon^{2}+\log N_{\mathrm{KL}}(\varepsilon, \Theta)$.

Remark Note that we have two sets of points here:

- $\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{M}\right\} \subset \Theta$ is a δ-packing in ρ, with cardinality $M=M(\delta, \Theta, \rho)$.
- $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right\} \subset \Theta$ is an ε-packing in ρ_{KL}, with cardinality $N=N\left(\varepsilon, \Theta, \rho_{\mathrm{KL}}\right)=N_{\mathrm{KL}}(\varepsilon, \Theta)$.

2.2 Procedure for using Yang-Barron's upper bound

We can employ the following two steps when choosing the parameters ϵ and δ.

1. Choose $\varepsilon>0$ such that

$$
\begin{equation*}
\varepsilon^{2} \geq \log N_{\mathrm{KL}}(\varepsilon, \Theta) \tag{5}
\end{equation*}
$$

2. Choose the largest $\delta>0$ such that

$$
\begin{equation*}
\log M(\delta, \Theta, \rho) \geq 4 \varepsilon^{2}+2 \log 2 \tag{6}
\end{equation*}
$$

With the above choice, we have the following lower bound the minimax error:

$$
\begin{align*}
\inf _{\hat{\theta} \sup _{\theta \in \Theta} \mathbb{E}[\rho(\hat{\theta}, \theta)]} & \geq \delta\left(1-\frac{I(X ; J)+\log 2}{\log M}\right), & & \text { by combining }(1) \text { and }(2) \\
& \geq \delta\left(1-\frac{\varepsilon^{2}+\log N_{\mathrm{KL}}(\varepsilon, \Theta)+\log 2}{\log M}\right), & & \text { by Lemma } 1 \\
& \geq \delta\left(1-\frac{2 \varepsilon^{2}+\log 2}{4 \varepsilon^{2}+2 \log 2}\right), & & \text { by what we just did in (5) and (6) } \\
& =\frac{1}{2} \delta . & & \tag{7}
\end{align*}
$$

3 Application: Lipschitz regression

For application, we consider a non-parametric regression problem over Lipschitz functions. We observe

$$
y_{i}=f\left(x_{i}\right)+e_{i}, \quad i=1,2, \ldots, n,
$$

where x_{i} 's are fixed, $e_{i} \stackrel{\text { iid }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$ for all i, and f is an unknown function from the function class

$$
\mathcal{F}:=\{f:[0,1] \rightarrow \mathbb{R} \mid f(0)=0, f \text { is } 1 \text {-Lipchitz }\}
$$

Here \mathcal{F} acts as the parameter space Θ in the non-parametric setting.
We have proved in Homework 1 that

$$
\log N\left(\delta, \mathcal{F},\|\cdot\|_{\infty}\right) \asymp \log M\left(\delta, \mathcal{F},\|\cdot\|_{\infty}\right) \asymp \frac{1}{\delta} .
$$

So we can find a desired δ-packing of \mathcal{F} in $\|\cdot\|_{\infty}$.
Next we need an ε-covering of \mathcal{F} in ρ_{KL}. Observe that the distribution of the data $\left(y_{i}\right)_{i=1}^{n}$ is

$$
\begin{aligned}
\mathbb{P}_{f} & =\mathcal{N}\left(f\left(x_{1}\right), \sigma^{2}\right) \times \cdots \times \mathcal{N}\left(f\left(x_{n}\right), \sigma^{2}\right) \\
& =\mathcal{N}\left(f\left(x_{1}^{n}\right), \sigma^{2} I_{n}\right)
\end{aligned}
$$

which represents an n-dimensional Gaussian distribution with mean vector $f\left(x_{1}^{n}\right)=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$. Then we can calculate the pairwise KL-divergence:

$$
\begin{aligned}
D\left(\mathbb{P}_{f} \| \mathbb{P}_{g}\right) & =\frac{1}{2 \sigma^{2}}\left\|f\left(x_{1}^{n}\right)-g\left(x_{1}^{n}\right)\right\|_{2}^{2} \\
& \leq \frac{n}{2 \sigma^{2}}\|f-g\|_{\infty}^{2}
\end{aligned}
$$

Hence the metric entropy of \mathcal{F} in KL-divergence is proportional to that in $\|\cdot\|_{\infty}$:

$$
\begin{aligned}
\log N_{\mathrm{KL}}(\varepsilon, \mathcal{F}) & \asymp \log N\left(\sqrt{\frac{2 \sigma^{2}}{n}} \varepsilon, \mathcal{F},\|\cdot\|_{\infty}\right) \\
& \asymp \frac{\sqrt{n}}{\varepsilon \sigma}
\end{aligned}
$$

Now we are ready to set the parameters ε and δ according to our two-step procedure:

1. Choose $\varepsilon=\left(\frac{\sqrt{n}}{\sigma}\right)^{\frac{1}{3}}$ so that $\varepsilon^{2} \geq \frac{\sqrt{n}}{\sigma \varepsilon} \gtrsim \log N_{\mathrm{KL}}(\varepsilon, \mathcal{F})$.
2. Choose $\delta \asymp \frac{1}{\varepsilon^{2}}$ so that $\log M\left(\delta, \Theta,\|\cdot\|_{\infty}\right) \gtrsim \frac{1}{\delta} \geq 4 \varepsilon^{2}+2 \log 2$.

Thus we satisfy the requirements in (5) and (6), and the minimax lower bound (7) holds. In particular, we have

$$
\inf _{\hat{f}} \sup _{f \in \mathcal{F}} \mathbb{E}\left[\|\hat{f}-f\|_{\infty}\right] \geq \frac{1}{2} \delta \asymp\left(\frac{\sigma^{2}}{n}\right)^{\frac{1}{3}} .
$$

Note that this tight lower bound cannot be achieved using local Fano's method instead.
We may compare this lower bound with the upper bound we derived in Lectures 14-15:

$$
\|\hat{f}-f\|_{n}:=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(\hat{f}\left(x_{i}\right)-f\left(x_{i}\right)\right)^{2}} \lesssim\left(\frac{1}{n}\right)^{\frac{1}{3}}
$$

We can do some extra work to match the norms. In this case, the upper and lower bound match.

