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1 Recap: Local Fano’s Method

Recall the two key theorems from previous lectures.
Theorem 1 (Estimation to testing). If {01,6s,...,0x} is a 20-packing of parameter space © in p(-,-), then

. ; - .
inf sup Eg, [P(9(X),9)} > 513fM;]P’ [D(X) # j|Pe,] - (1)

Theorem 2 (Fano’s inequality). For any testing procedure 1, we have

_I(X;J) +1og2

Plp(X) #J] > 1 o M

(2)

In the local Fano’s method, we upper bound the mutual information by the maximum of pairwise KL-
divergence,

I(X;J) < max D(Py,[|Py,) < g(6).
l,j N

This upper bound, based on convexity of KL, is relatively crude and not tight under some settings, especially
for non-parametric problems. In particular, with this upper bound we only makes use of a local packing of
©. In order to capture the full capacity of the entire parameter space, we will develop the so-called global
Fano’s method.

2 Global Fano’s method

The global Fano’s method is based on the following better upper bound on the mutual information.

2.1 Yang-Barron’s upper bound

Lemma 1 (Yang-Barron’s upper bound). Let Nxi,(¢,0) denote the e-covering number of © in the pseudo-

distance pkr,(0,0") := \/D(Py||Py). Then we have
I(X;J) < e +log Nk (¢,0), Ve > 0. (3)

Proof Recall the notation Qx := ﬁ Z;Vil Py, for the marginal distribution of X. Then for any distribution
of X, denoted by @Q’, we have

M
1
I(X;J) = yYi D(Py, ||Qx) definition of KL
j=1
| XM
< i Z D(Py, ||Q"), the mixture distribution x minimizes the average KL
j=1
< max DRy Q), a



Note that the second step above is an analogue of the fact that

1 M 1 M
. 2 o )
arger,nln M E ‘ ||9J —0 ||2 = M E . 9].
J= J=

Let {f1,82,...,8n} be a minimal e-covering of © w.r.t. pkr,, where N = Nkp,(g,0). Note that we are
free to choose any Q'. Here we set Q' = +; S, Ps,.

Fix an arbitrary index j € {1,2,...,M}. By definition of e-covering, there exists some §; such that
px1(0;, Bi) < e. We therefore have

dPy. .
D(Py,[|Q") = E,, llog W] , dPp, denotes the density of Py,
N Zui=1 4B
dPy.
< Ep, |log 5 sum of N terms is lower bounded by any one term
%3 LdP
’ NYB;
= D(Py, ||Pg,) + log N
<e24 log N.

Combining this upper bound (valid for all j = 1,2,..., M) with equation (4) gives the desired inequality
I(X;J) < &2 +log Nk, (e, ©). O

Remark Note that we have two sets of points here:
o {01,05,...,0p} C O is a §-packing in p, with cardinality M = M (4,0, p).

o {$1,B2,...,8n} C O is an e-packing in pkr,, with cardinality N = N (e, ©, pk1.) = Nk1(g, O).

2.2 Procedure for using Yang-Barron’s upper bound

We can employ the following two steps when choosing the parameters € and 6.

1. Choose ¢ > 0 such that
e? > log Nx1 (¢, ©). (5)

2. Choose the largest 6 > 0 such that

log M (8,0, p) > 4¢% + 2log 2. (6)
With the above choice, we have the following lower bound the minimax error:

X:;J)+log2
’)+0g> , by combining (1) and (2)
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infsupE [p(6,0)] > (1—
5 beo [p( ) } ( log M

2 +log N O) +log2
>4 (1 _gtlos kL(c,©) + log ) , by Lemma 1
log M
2e2 + log 2
>4 (1 - m) ) by what we just did in (5) and (6)
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3 Application: Lipschitz regression
For application, we consider a non-parametric regression problem over Lipschitz functions. We observe
yi:f(mi)+ei7 i:1727"'7na

where z;’s are fixed, e; iid N(0,02) for all 4, and f is an unknown function from the function class
F:={f:[0,1] = R| f(0) =0, f is 1-Lipchitz}.

Here F acts as the parameter space © in the non-parametric setting.
We have proved in Homework 1 that

1
log N(8, F, [|-llo) = 1og M (6, F, [ c) = 5-

So we can find a desired ¢-packing of F in [|-|| .
Next we need an e-covering of F in pkr,. Observe that the distribution of the data (y;); is

Py = N(f(x1),0%) x - x N(f(wy),0?)
= N(f(z1),0°I,),

which represents an n-dimensional Gaussian distribution with mean vector f(z}) = (f(x1),..., f(x,)). Then
we can calculate the pairwise KL-divergence:

D(Bs[B,) = 5y 17(at) — (o)

n 2
952 ||f - g”oo'

Hence the metric entropy of F in KL-divergence is proportional to that in ||-|| :

202
logNKL(E,]:)xlogN 757]:’ ||||oo
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Now we are ready to set the parameters € and § according to our two-step procedure:
1
)\ 3
1. Choose € = (@) so that ¢2 > % 2> log Nk1, (e, F).

2. Choose § < % so that log M (8,0, ||| .) 2 § > 4e% + 2log 2.

2

Thus we satisfy the requirements in (5) and (6), and the minimax lower bound (7) holds. In particular, we

have )
R 1 2\ 3
iqfsupE[Hf—fH }25x(0) .

f ferF o 2 n

Note that this tight lower bound cannot be achieved using local Fano’s method instead.
We may compare this lower bound with the upper bound we derived in Lectures 14-15:

|71, = i; (P - f@0) " < (;) |

We can do some extra work to match the norms. In this case, the upper and lower bound match.




