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1 Recap: Local Fano’s Method

Recall the two key theorems from previous lectures.

Theorem 1 (Estimation to testing). If {θ1, θ2, . . . , θM} is a 2δ-packing of parameter space Θ in ρ(·, ·), then

inf
θ̂

sup
θ∈Θ

EPθ

[
ρ(θ̂(X), θ)

]
≥ δ inf

ψ

1

M

M∑
j=1

P
[
ψ(X) 6= j

∣∣Pθj ] . (1)

Theorem 2 (Fano’s inequality). For any testing procedure ψ, we have

P [ψ(X) 6= J ] ≥ 1− I(X; J) + log 2

logM
. (2)

In the local Fano’s method, we upper bound the mutual information by the maximum of pairwise KL-
divergence,

I(X; J) ≤ max
i,j

D(Pθi‖Pθj ) ≤ g(δ).

This upper bound, based on convexity of KL, is relatively crude and not tight under some settings, especially
for non-parametric problems. In particular, with this upper bound we only makes use of a local packing of
Θ. In order to capture the full capacity of the entire parameter space, we will develop the so-called global
Fano’s method.

2 Global Fano’s method

The global Fano’s method is based on the following better upper bound on the mutual information.

2.1 Yang-Barron’s upper bound

Lemma 1 (Yang-Barron’s upper bound). Let NKL(ε,Θ) denote the ε-covering number of Θ in the pseudo-
distance ρKL(θ, θ′) :=

√
D(Pθ‖Pθ′). Then we have

I(X; J) ≤ ε2 + logNKL(ε,Θ), ∀ε > 0. (3)

Proof Recall the notationQX := 1
M

∑M
j=1 Pθi for the marginal distribution ofX. Then for any distribution

of X, denoted by Q′, we have

I(X; J) =
1

M

M∑
j=1

D(Pθj‖QX) definition of KL

≤ 1

M

M∑
j=1

D(Pθj‖Q′), the mixture distribution QX minimizes the average KL

≤ max
j=1,...,M

D(Pθj‖Q′). (4)
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Note that the second step above is an analogue of the fact that

arg min
θ′

 1

M

M∑
j=1

‖θj − θ′‖
2

2

 =
1

M

M∑
j=1

θj .

Let {β1, β2, . . . , βN} be a minimal ε-covering of Θ w.r.t. ρKL, where N = NKL(ε,Θ). Note that we are

free to choose any Q′. Here we set Q′ = 1
N

∑N
`=1 Pβ` .

Fix an arbitrary index j ∈ {1, 2, . . . ,M}. By definition of ε-covering, there exists some βi such that
ρKL(θj , βi) ≤ ε. We therefore have

D(Pθj‖Q′) = EPθj

[
log

dPθj
1
N

∑N
l=1 dPβl

]
, dPθj denotes the density of Pθj

≤ EPθj

[
log

dPθj
1
N dPβi

]
sum of N terms is lower bounded by any one term

= D(Pθj‖Pβi) + logN

≤ ε2 + logN.

Combining this upper bound (valid for all j = 1, 2, . . . ,M) with equation (4) gives the desired inequality
I(X; J) ≤ ε2 + logNKL(ε,Θ).

Remark Note that we have two sets of points here:

• {θ1, θ2, . . . , θM} ⊂ Θ is a δ-packing in ρ, with cardinality M = M(δ,Θ, ρ).

• {β1, β2, . . . , βN} ⊂ Θ is an ε-packing in ρKL, with cardinality N = N(ε,Θ, ρKL) = NKL(ε,Θ).

2.2 Procedure for using Yang-Barron’s upper bound

We can employ the following two steps when choosing the parameters ε and δ.

1. Choose ε > 0 such that
ε2 ≥ logNKL(ε,Θ). (5)

2. Choose the largest δ > 0 such that

logM(δ,Θ, ρ) ≥ 4ε2 + 2 log 2. (6)

With the above choice, we have the following lower bound the minimax error:

inf
θ̂

sup
θ∈Θ

E
[
ρ(θ̂, θ)

]
≥ δ

(
1− I(X; J) + log 2

logM

)
, by combining (1) and (2)

≥ δ
(

1− ε2 + logNKL(ε,Θ) + log 2

logM

)
, by Lemma 1

≥ δ
(

1− 2ε2 + log 2

4ε2 + 2 log 2

)
, by what we just did in (5) and (6)

=
1

2
δ. (7)
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3 Application: Lipschitz regression

For application, we consider a non-parametric regression problem over Lipschitz functions. We observe

yi = f(xi) + ei, i = 1, 2, . . . , n,

where xi’s are fixed, ei
iid∼ N (0, σ2) for all i, and f is an unknown function from the function class

F := {f : [0, 1]→ R | f(0) = 0, f is 1-Lipchitz}.

Here F acts as the parameter space Θ in the non-parametric setting.
We have proved in Homework 1 that

logN(δ,F , ‖·‖∞) � logM(δ,F , ‖·‖∞) � 1

δ
.

So we can find a desired δ-packing of F in ‖·‖∞.
Next we need an ε-covering of F in ρKL. Observe that the distribution of the data (yi)

n
i=1 is

Pf = N (f(x1), σ2)× · · · × N (f(xn), σ2)

= N (f(xn1 ), σ2In),

which represents an n-dimensional Gaussian distribution with mean vector f(xn1 ) = (f(x1), . . . , f(xn)). Then
we can calculate the pairwise KL-divergence:

D(Pf‖Pg) =
1

2σ2
‖f(xn1 )− g(xn1 )‖22

≤ n

2σ2
‖f − g‖2∞ .

Hence the metric entropy of F in KL-divergence is proportional to that in ‖·‖∞:

logNKL(ε,F) � logN

(√
2σ2

n
ε,F , ‖·‖∞

)

�
√
n

εσ
.

Now we are ready to set the parameters ε and δ according to our two-step procedure:

1. Choose ε =
(√

n
σ

) 1
3

so that ε2 ≥
√
n
σε & logNKL(ε,F).

2. Choose δ � 1
ε2 so that logM(δ,Θ, ‖·‖∞) & 1

δ ≥ 4ε2 + 2 log 2.

Thus we satisfy the requirements in (5) and (6), and the minimax lower bound (7) holds. In particular, we
have

inf
f̂

sup
f∈F

E
[∥∥∥f̂ − f∥∥∥

∞

]
≥ 1

2
δ �

(
σ2

n

) 1
3

.

Note that this tight lower bound cannot be achieved using local Fano’s method instead.
We may compare this lower bound with the upper bound we derived in Lectures 14-15:

∥∥∥f̂ − f∥∥∥
n

:=

√√√√ 1

n

n∑
i=1

(
f̂(xi)− f(xi)

)2

.

(
1

n

) 1
3

.

We can do some extra work to match the norms. In this case, the upper and lower bound match.
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