ORIE 7790 High Dimensional Probability and Statistics

Lecture 21 - 4/28/2020

Lectures 21-22: Online Learning

Lecturer: Yudong Chen Scribe: Billy Jin, Miaolan Xie

Reading:

• Chapter 21 of Duchi's notes.

• Xinhua Zhang, short notes on mirror descent,

• Elad Hazan, "Introduction to Online Convex Optimization",

In these two lectures, we study online learning problems under the framework of online convex optimization. We give a few examples that fall into this framework. We then introduce a general algorithm called Online Mirror Descent for solving online convex optimization. We conclude by analyzing the regret of online mirror descent.

1 Online Convex Optimization

The setup can be described as a two-player sequential game:

- Let $W \subseteq \mathbb{R}^d$ be a *convex* parameter space.
- At each time t, player 1 (the learner) plays some $w_t \in W$.
- Player 2 (the adversary) then plays a loss function $L_t: W \to \mathbb{R}$, where L_t is convex.

Note that the learner commits to w_t before seeing L_t , whereas the adversary may adapt his choice of L_t to w_1, \ldots, w_t . The goal for the learner is to minimize regret, defined as

$$\sum_{t=1}^{T} L_t(w_t) - \sum_{t=1}^{T} L_t(w^*),$$

where $w^* := \arg\min_{w \in W} \sum_{t=1}^{T} L_t(w)$ is the best fixed decision in hindsight.

1.1 Examples

Here are some examples of problems that fall into the framework of online convex optimization.

- 1. Online support vector machine: At each time t, the learner picks a vector $w_t \in \mathbb{R}^d$. Then, a data point $(x_t, y_t) \in \mathbb{R}^d \times \{\pm 1\}$ is revealed, and the learner incurs loss $L_t(w_t)$, where $L_t(w) = \max\{1 y_t \langle w, x_t \rangle, 0\}$. (This loss function is called the *hinge loss*.)
- 2. Online logistic regression: Same setup, except now the loss function is $L_t(w) = \log (1 + e^{-y_t \langle w, x_t \rangle})$. (This is the *logistic loss*.)
- 3. Expert prediction/adversarial bandit: There are d experts/arms. At each time t, each expert makes a prediction (for example "I predict the stock market will go up tomorrow"). At each time t, the learner chooses a weight vector $w_t = (w_{t1}, \ldots, w_{td})$, where

 w_{tj} = weight for expert j = probability of pulling arm j.

So the parameter space is $W = \Delta_d := \{ w \in \mathbb{R}^d : \sum_j w_j = 1, w_j \geq 0 \}$, which is the probability simplex in \mathbb{R}^d . Then losses

$$l_{tj} = 1\{\text{expert } j \text{ is wrong at time } t\} = \text{loss of arm } j \text{ at time } t$$

are revealed, and the learner incurs loss $L_t(w) = \langle w, l_t \rangle$. Note that $\nabla L_t(w) = l_t$.

2 Online Gradient Descent

Gradient descent extends naturally to an algorithm for online convex optimization. Online gradient descent does, at each iteration t + 1:

$$w_{t+1} = \operatorname{Proj}_W(w_t - \eta_t g_t),$$

where η_t is the step size and $g_t \in \partial L_t(w_t)$. Note that this update is equivalent to

$$w_{t+1} = \underset{w \in W}{\operatorname{arg \, min}} \left\{ \langle g_t, w \rangle + \frac{1}{2\eta_t} \|w - w_t\|_2^2 \right\}$$

3 Bregman Divergence

We will next see how to extend gradient descent to a more general algorithm. First, we will need to introduce the notion of Bregman divergence. Let $\psi : \mathbb{R}^d \to \mathbb{R}$ be a differentiable convex function.

Definition 1 (Bregman Divergence). The **Bregman divergence** associated with ψ is a function B_{ψ} : $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ defined by

$$B_{\psi}(w,v) := \psi(w) - \psi(v) - \langle \nabla \psi(v), w - v \rangle$$

Remark By the convexity of ψ , the Bregman divergence B_{ψ} is always non-negative. One can think of $B_{\psi}(w,v)$ as a measure of "distance" between w and v; however, the Bregman divergence is not necessarily symmetric or satisfies the triangle inequality.

3.1 Examples

- 1. Euclidean distance. Let $\psi(w) = \frac{1}{2} \|w\|_2^2$. Then $B_{\psi}(w, v) = \frac{1}{2} \|w v\|_2^2$.
- 2. Mahalanobis distance. Let $\psi(w) = \frac{1}{2}w^{\top}Aw =: \frac{1}{2}\|w\|_{A}^{2}$, where $A \geq 0$. Then $B_{\psi}(w,v) = \frac{1}{2}(w-v)^{\top}A(w-v) = \frac{1}{2}\|w-v\|_{A}^{2}$.
- 3. **KL-divergence.** Let $\psi(w) = \sum_{j=1}^d w_j \log w_j$ be the negative entropy. Note that ψ is convex on \mathbb{R}^d_+ . Then $B_{\psi}(w,v) = \sum_{j=1}^d w_j \log \frac{w_j}{v_j} = D_{\mathrm{KL}}(w \parallel v)$ for all $w,v \in \Delta_d$.

4 Online Mirror Descent (OMD)

This is a generalization of gradient descent using Bregman divergences. At iteration t:

$$w_{t+1} = \operatorname*{arg\,min}_{w \in W} \left\{ \langle g_t, w \rangle + \frac{1}{\eta_t} B_{\psi}(w, w_t) \right\} \tag{1}$$

Remark $\langle g_t, w \rangle + \frac{1}{\eta_t} B_{\psi}(w, w_t)$ is convex in w. Hence this is a convex optimization problem.

4.1 Special cases of OMD

Gradient descent $\psi(w) = \frac{1}{2} \|w\|_2^2$

Exponentiated gradient descent This is online mirror descent with $W = \Delta_d$, $\psi(w) = \sum_j w_j \log w_j$, and $B_{\psi}(w, v) = D_{\text{KL}}(w \parallel v)$. At iteration t:

$$w_{t+1} = \underset{w \in W}{\operatorname{arg\,min}} \left\{ \langle g, w \rangle + \frac{1}{\eta_t} D_{\mathrm{KL}}(w \parallel w_t) \right\}.$$

To explicit calculate w_{t+1} , we write the Lagrangian:

$$L(w, \lambda, \tau) = \langle g, w \rangle + \frac{1}{\eta} \sum_{j=1}^{d} w_j \log \frac{w_j}{v_j} - \langle \lambda, w \rangle + \tau \left(\langle \mathbb{1}, w \rangle - 1 \right).$$

Here, $\lambda \in \mathbb{R}^d$ is the multiplier for the constraint $w \geq 0$ and $\tau \in \mathbb{R}$ is the multiplier for the constraint $\langle \mathbb{1}, w \rangle = 1$. Taking $\frac{\partial}{\partial w} L(w, \lambda, \tau) = 0$ gives

$$w_{t+1,j} = v_j \exp(-\eta g_j + \lambda_j \eta - \tau \eta - 1) > 0.$$

Hence the constraint $w \geq 0$ is inactive, which implies $\lambda = 0$. We choose τ to normalize w, giving

$$w_{t+1} = \left(\frac{w_{ti} \exp(-\eta_t g_{ti})}{\sum_{j=1}^d w_{tj} \exp(-\eta_t g_{tj})}\right)_{i=1,\dots,d}$$
(2)

$$\propto \left(\exp\left(-\sum_{k=1}^{t} \eta_k g_{ki} \right) \right)_{i=1,\dots,d} \tag{3}$$

$$= \operatorname{soft-argmin} \left\{ \sum_{k=1}^{t} \eta_k g_{ki}, \ i = 1, \dots, d \right\}. \tag{4}$$

Remark In the context of the expert problem, g_{ki} is the loss of expert i at time k. Hence, $\sum_{k=1}^{t} g_{ki}$ is the total loss of expert i up to time t. Hence exponentiated gradient descent favors experts with low loss, but still assigns positive weight to every expert. This algorithm can thus be interpreted as a smoothed version of "follow the leader", where the weights are updated in an multiplicative fashion. (Variants of) exponentiated gradient descent is also known as multiplicative weight update (MWU), follow-the-regularized-leader (FTRL), fictitious play (FP), Hedge algorithm, and entropic mirror descent.

5 Analysis of Online Mirror Descent

We begin with some definitions.

Definition 2 (Strong convexity). ψ is strongly convex with respect to $\|\cdot\|$ if, for all v, w:

$$\psi(w) - \psi(v) - \langle g, w - v \rangle \ge \frac{1}{2} \|w - v\|^2$$
, for all $g \in \partial \psi(v)$.

This is equivalent to $B_{\psi}(w,v) \geq \frac{1}{2} \|w-v\|^2$ by definition of Bregman divergence.

Example 1. Let $\psi(w) = \sum_j w_j \log w_j$ be negative entropy. Then by Pinsker's inequality, we have

$$B_{\psi}(w,v) = D_{\mathrm{KL}}(w \parallel v) \ge \frac{1}{2} \|w - v\|_{1}^{2}.$$
 (5)

In other words, the negative entropy is strongly convex with respect to the ℓ_1 norm.

Definition 3 (Dual norm). The dual norm of $\|\cdot\|$ is the norm $\|\cdot\|_*$ defined by

$$||y||_* = \sup_{x:||x|| \le 1} \langle x, y \rangle.$$

Example 2. The dual norm of $\|\cdot\|_2$ is $\|\cdot\|_2$. The dual norm of $\|\cdot\|_\infty$ is $\|\cdot\|_1$. The dual norm of $\|\cdot\|_{\text{nuc}}$ (nuclear norm) is $\|\cdot\|_{\text{op}}$ (operator norm).

Theorem 1 (Regret of Online Mirror Descent). Suppose that ψ is strongly convex with respect to $\|\cdot\|$ with dual norm $\|\cdot\|_*$. Then online mirror descent with step size $\eta_t \equiv \eta$ satisfies

$$\sum_{t=1}^{T} \left[L_t(w_t) - L_t(w^*) \right] \le \frac{1}{\eta} B_{\psi}(w^*, w_1) + \frac{\eta}{2} \sum_{t=1}^{T} \|g_t\|_*^2.$$

Proof Recall that $w_{t+1} = \arg\min_{w \in W} \left\{ \langle g_t, w \rangle + \frac{1}{\eta} B_{\psi}(w, w_t) \right\}$. By the optimality condition for convex optimization (negative gradient lies in the normal cone), we have

$$0 \le \left\langle g_t + \frac{1}{\eta} \frac{\partial}{\partial w} B_{\psi}(w, w_t) \Big|_{w = w_{t+1}}, w^* - w_{t+1} \right\rangle$$
$$= \left\langle g_t + \frac{1}{\eta} \left(\nabla \psi(w_{t+1}) - \nabla \psi(w_t) \right), w^* - w_{t+1} \right\rangle.$$

Therefore, we have

$$L_{t}(w_{t}) - L_{t}(w^{*}) \leq \langle g_{t}, w_{t} - w^{*} \rangle \qquad \text{convexity of } L_{t}$$

$$= \langle g_{t}, w_{t+1} - w^{*} \rangle + \langle g_{t}, w_{t} - w_{t+1} \rangle$$

$$\leq \frac{1}{\eta} \langle \nabla \psi(w_{t_{1}}) - \nabla \psi(w_{t}), w^{*} - w_{t+1} \rangle + \langle g_{t}, w_{t} - w_{t+1} \rangle \qquad \text{last display equation}$$

$$= \frac{1}{\eta} \left[B_{\psi}(w^{*}, w_{t}) - B_{\psi}(w^{*}, w_{t+1}) - B_{\psi}(w_{t+1}, w_{t}) \right] + \langle g_{t}, w_{t} - w_{t+1} \rangle,$$

where the last step follows from direct calculation using definition and is sometimes known as the "three-point identity". Summing over t = 1, ..., T, the sum telescopes, and we get

$$\sum_{t=1}^{T} (L_t(w_t) - L_t(w^*)) \le \frac{1}{\eta} \left[B_{\psi}(w^*, w_1) - B_{\psi}(w^*, w_{T+1}] + \sum_{t=1}^{T} \left[-\frac{1}{\eta} B_{\psi}(w_{t+1}, w_t) + \langle g_t, w_t - w_{t+1} \rangle \right]$$

$$\le \frac{1}{\eta} B_{\psi}(w^*, w_1) + \sum_{t=1}^{T} \left[-\frac{1}{\eta} B_{\psi}(w_{t+1}, w_t) + \langle g_t, w_t - w_{t+1} \rangle \right]$$

To control the last RHS term, we observe that

$$\begin{split} \langle g_t, w_t - w_{t+1} \rangle &\leq \|g_t\|_* \|w_t - w_{t+1}\| & \text{definition of dual norm} \\ &\leq \frac{\eta}{2} \|g_t\|^2 + \frac{1}{2\eta} \|w_t - w_{t+1}\|^2 & ab \leq \frac{1}{2} (a^2 + b^2) \\ &\leq \frac{\eta}{2} \|g_t\|_*^2 + \frac{1}{\eta} B_{\psi}(w_{t+1}, w_t) & \text{strong convexity of } \psi. \end{split}$$

Combining pieces, we obtain the desired regret bound

$$\sum_{t=1}^{T} \left(L_t(w_t) - L_t(w^*) \right) \le \frac{1}{\eta} B_{\psi}(w^*, w_1) + \frac{\eta}{2} \sum_{t=1}^{T} \|g_t\|_*^2.$$

6 Applications

6.1 Online (sub)-gradient descent

Let $\psi(w) = \frac{1}{2} \|w\|_2^2$. Then ψ is strong convex with respect to $\|\cdot\|_2$, and the dual norm is $\|\cdot\|_2$. Suppose each L_t is L-Lipschitz, which implies $\|g_t\|_2 \leq L$. Then the regret bound is

$$\sum_{t=1}^{T} \left(L_t(w_t) - L_t(w^*) \right) \le \frac{1}{2\eta} \|w^* - w_1\|_2^2 + \frac{\eta}{2} T \cdot L^2.$$

Choosing $\eta = \frac{\|w^* - w_1\|_2}{L\sqrt{T}}$ to minimize the RHS gives

$$\operatorname{regret} \le \|w^* - w_1\|_2 L\sqrt{T}.$$

Remark The $O(\sqrt{T})$ regret bound immediately implies a $O(\frac{1}{\sqrt{T}})$ convergence rate for the offline setting where all $L_t \equiv f$. In particular, letting $\bar{w} = \frac{1}{T} \sum_{t=1}^{T} w_t$, we have

$$f(\bar{w}) - f(w^*) \le \frac{1}{T} \sum_{t=1}^{T} [f(w_t) - f(w^*)] \le \frac{\|w^* - w_1\|_2}{\sqrt{T}},$$

where the first step above is by Jensen's inequality.

6.2 Expoentiated gradient descent

Let $W = \Delta_d$, and $\psi(w) = \sum_j w_j \log w_j$ be the negative entropy. Then ψ is strongly convex with respect to $\|\cdot\|_1$, with dual norm $\|\cdot\|_{\infty}$. Then the regret bound is

$$\sum_{t=1}^{T} \left(L_t(w_t) - L_t(w^*) \right) \le \frac{1}{\eta} D_{\mathrm{KL}}(w^* \parallel w_1) + \frac{\eta}{2} \sum_{t=1}^{T} \left\| g_t \right\|_{\infty}^{2}.$$

If in addition we take the initial iterate $w_1 = (\frac{1}{d}, \dots, \frac{1}{d})$ to be the uniform distribution, then one can verify that $D_{\mathrm{KL}}(w^* \parallel w_1) \leq \log d$. Also, set $\eta = \sqrt{\frac{\log d}{2T \max_t \|g_t\|_{\infty}^2}}$. Then the regret is

$$\operatorname{regret} \le \sqrt{T \log d \cdot \max_{t} \|g_{t}\|_{\infty}^{2}}.$$
 (6)

Remark Compared to online gradient descent, the dependence on the gradients g_t is $\max_t \|g_t\|_{\infty}$ instead of $\max_t \|g_t\|_2$. Thus exponentiated gradient descent can do better than gradient descent when the gradients g_t are small in magnitude and not sparse.

6.3 Expert problem

Recall that l_{tj} is the loss of expert j at time t, and that $g_t = l_t \in \{0,1\}^d$. Thus $||g_t||_{\infty} \leq 1$. Plugging this into the bound for exponentiated gradient descent gives

$$\operatorname{regret} \leq \sqrt{T \log d}$$

Remark This regret bound is optimal for the expert problem. In comparison, gradient descent would get \sqrt{Td} regret, which has an exponentially larger dependence on the dimension d.

7 Extensions

- 1. We chose our step size η to be proportional to $\frac{1}{\sqrt{T}}$. This requires the time horizon to be known to the algorithm. If T is not known, one can use a varying step size $\eta_t = \frac{1}{\sqrt{t}}$ and prove essentially the same guarantees (under a slightly stronger boundedness assumption; see Duchi's notes.)
- 2. Acceleration. If more is known about the loss function L_t , then better regret bounds (in the online setting) and convergence rates (in the offline setting) can be obtained.
 - L_t is smooth (gradient is Lipschitz): We have an improvement $\sqrt{T} \to O(1)$ in regret, which translates to an improvement $\frac{1}{\sqrt{T}} \to \frac{1}{T}$ in rate.
 - L_t is strongly convex: We have an improvement $\sqrt{T} \to \log T$ in regret, and hence $\frac{1}{\sqrt{T}} \to \frac{\log T}{T}$ in rate.

See Xinhua Zhang's notes for details.

3. So far, we assumed that we observe the losses of all the experts/arms, even those we did not choose/pull. This is the full information setting. Next week, we will look at the "bandit information" setting, where we only observe the loss of the expert/arm that we choose/pull, that is, we only see one entry of $\nabla L_t = g_t = l_t$.