ORIE 7790 High Dimensional Probability and Statistics Lecture 21 - 4/28/2020

Lectures 21-22: Online Learning
Lecturer: Yudong Chen Scribe: Billy Jin, Miaolan Xie

Reading:

e Chapter 21 of Duchi’s notes.

e Xinhua Zhang, short notes on mirror descent,

e Elad Hazan, “Introduction to Online Convex Optimization”,

In these two lectures, we study online learning problems under the framework of online convex optimiza-
tion. We give a few examples that fall into this framework. We then introduce a general algorithm called
Online Mirror Descent for solving online convex optimization. We conclude by analyzing the regret of online
mirror descent.

1 Online Convex Optimization

The setup can be described as a two-player sequential game:
o Let W C R be a convexr parameter space.
e At each time ¢, player 1 (the learner) plays some wy € W.
e Player 2 (the adversary) then plays a loss function L; : W — R, where L; is convex.

Note that the learner commits to w; before seeing L;, whereas the adversary may adapt his choice of L; to

wi, ..., ws. The goal for the learner is to minimize regret, defined as
T T
> Lilw) = 3 Low?),
t=1 t=1

where w* := argmin,, cy 23:1 L (w) is the best fixed decision in hindsight.

1.1 Examples

Here are some examples of problems that fall into the framework of online convex optimization.

1. Online support vector machine: At each time ¢, the learner picks a vector w; € RY. Then,
a data point (z¢,1:) € RY x {£1} is revealed, and the learner incurs loss L;(w;), where L;(w) =
max{1l — y; (w,z;),0}. (This loss function is called the hinge loss.)

2. Online logistic regression: Same setup, except now the loss function is L;(w) = log (1 + e’yf<“”mf>).
(This is the logistic loss.)

3. Expert prediction/adversarial bandit: There are d experts/arms. At each time ¢, each expert
makes a prediction (for example “I predict the stock market will go up tomorrow”). At each time ¢,
the learner chooses a weight vector wy = (ws1, ..., wtq), where

wy; = weight for expert j = probability of pulling arm j.


http://web.stanford.edu/class/stats311/lecture-notes.pdf
http://users.cecs.anu.edu.au/~xzhang/teaching/bregman.pdf
https://ocobook.cs.princeton.edu/OCObook.pdf

So the parameter space is W = Ay := {w € R : Zj w; =1, w; > 0}, which is the probability simplex
in R%. Then losses

lyj = 1{expert j is wrong at time ¢} = loss of arm j at time ¢

are revealed, and the learner incurs loss Li(w) = (w, ;). Note that VL;(w) = I;.

2 Online Gradient Descent

Gradient descent extends naturally to an algorithm for online convex optimization. Online gradient descent
does, at each iteration ¢ + 1:
wit1 = Projy, (wy — 1:g¢),

where 7; is the step size and g; € L:(w;). Note that this update is equivalent to

. 1 2
wyp1 = argmin < (gg, w) + o lw — w5
weW "t

3 Bregman Divergence

We will next see how to extend gradient descent to a more general algorithm. First, we will need to introduce
the notion of Bregman divergence. Let ¢ : R — R be a differentiable convex function.

Definition 1 (Bregman Divergence). The Bregman divergence associated with v is a function By :
R? x R* — R defined by
By (w,v) := ¢ (w) = ¢(v) = (Vp(v), w — v)

Remark By the convexity of 1), the Bregman divergence B, is always non-negative. One can think of
By (w,v) as a measure of “distance” between w and v; however, the Bregman divergence is not necessarily
symmetric or satisfies the triangle inequality.

3.1 Examples
1. Euclidean distance. Let ¢(w) = 3 ||w||§ Then By (w,v) = § [|w — v||§
2. Mahalanobis distance. Let 1(w) = w ' Aw =: 1 Hw||124, where A = 0.
Then By (w,v) = 3(w —v)TA(w —v) = 3 [|[w - v||124.
d

3. KL-divergence. Let ¢)(w) = > ,_, w;logw; be the negative entropy. Note that ¢ is convex on R%.

Then By (w,v) = Z;l:l w; log :f—j = Dxr.(w || v) for all w,v € Aq.

4 Online Mirror Descent (OMD)

This is a generalization of gradient descent using Bregman divergences. At iteration t:

. 1
Wiyl = argmin {(gt, w) + — By (w, wt)} (1)
weWw Tt

Remark (g, w) + iBw (w,w;) is convex in w. Hence this is a convex optimization problem.



4.1 Special cases of OMD

Gradient descent 1 (w) = |w||§

Exponentiated gradient descent This is online mirror descent with W = Ay, ¥(w) = Zj w; log wy,
and By (w,v) = Dxr(w || v). At iteration ¢:

. 1

Wiy = arg min {(g,w) + —Dkr(w || wt)} .
weW Mt

To explicit calculate w1, we write the Lagrangian:

d

L(w,\,7) = (g,w>+%2wjlog%—()\,w>—|—7'(<]l,w> —1).

j=1 J

Here, A € R? is the multiplier for the constraint w > 0 and 7 € R is the multiplier for the constraint
(1,w) = 1. Taking 2 L(w,\,7) = 0 gives

wit1,; = vjexp (—ng; + Ajn—7mn—1) > 0.

Hence the constraint w > 0 is inactive, which implies A = 0. We choose 7 to normalize w, giving
Wy; €XP(—NeGti
Weer = ( e Cng) ) (2)
2= Wi exp (=mgi) )

« <exp ( 3 nm)) ®)
k=1 i=1,...,d

EEREE)

t
:soft-argmin{X:ng7 1= 1,...,d} : (4)

k=1

Remark In the context of the expert problem, gi; is the loss of expert ¢ at time k. Hence, 22:1 Jki is the
total loss of expert ¢ up to time ¢. Hence exponentiated gradient descent favors experts with low loss, but
still assigns positive weight to every expert. This algorithm can thus be interpreted as a smoothed version of
“follow the leader”, where the weights are updated in an multiplicative fashion. (Variants of) exponentiated
gradient descent is also known as multiplicative weight update (MWU), follow-the-regularized-leader
(FTRL), fictitious play (FP), Hedge algorithm, and entropic mirror descent.

5 Analysis of Online Mirror Descent

We begin with some definitions.

Definition 2 (Strong convexity). ¢ is strongly convex with respect to ||-|| if , for all v, w:
1
W(w) =) = {gow =) 2 5 lw—|*,  forall g € (v).

This is equivalent to By (w,v) > % ||w — v||2 by definition of Bregman divergence.

Example 1. Let ¢(w) = 5 Wj logw; be negative entropy. Then by Pinsker’s inequality, we have

1 2
By(w,v) = Dy (w || v) > 3 w7 (5)

In other words, the negative entropy is strongly convex with respect to the ¢; norm.



Definition 3 (Dual norm). The dual norm of ||-|| is the norm ||-||, defined by

lyll, = sup (z,9).
aifz)<1

Example 2. The dual norm of ||-||, is ||-||,. The dual norm of ||-||  is ||-|;. The dual norm of ||-||
norm) is [|-[|,, (operator norm).

e (nuclear

Theorem 1 (Regret of Online Mirror Descent). Suppose that i is strongly convexr with respect to ||-|| with
dual norm ||-||,. Then online mirror descent with step size n, = n satisfies

T
1
Z Li(wy) w*)] < Bw w*,wy) Z lgell? .

t=1

Proof Recall that wy;y; = argmin e, w) + By (w,w,) t. By the optimality condition for convex
+ g wew | \9 n Y

optimization (negative gradient lies in the normal cone), we have

*
y W — Wit
W=Wt+1

_ <gt + 2 (Vo(uen) - Votw) - wm> .

10
< -
0< <gt + n@wa(w’wt)

Therefore, we have

Li(we) — L(w™) < (ge, wr — w™) convexity of L
= (9t wer1 — W) + (ge, W — Wiy1)
1 . .
< " (Vip(we,) — Vp(we), w™ — wig1) + (ge, wp — wip1) last display equation

1 * *
= " [By(w*,wy) — By (w*, wit1) — By (Wi, we)] + (gr, we — W),

where the last step follows from direct calculation using definition and is sometimes known as the “three-point

identity”. Summing over ¢t = 1,...,7T, the sum telescopes, and we get
T
D (Li(wr) = Ly(w")) < " [By(w*,wi) = By (w”, wria] + ) {—an(th,wt) + {gt, we — wep1)
t=1 t=1

T
1 1
< HBw(wﬁwﬂ + Z [—an(thrhwt) + (g, wi — wiy1)
t=1

To control the last RHS term, we observe that

(g, we — wepr) < ||gell, |we — wiga]] definition of dual norm
1 1
< gHgt”2+%Hwt_wt+1”2 ab < §(a2+bz)
1
< g Hgtllf + =By (wit1,wt) strong convexity of .
n
Combining pieces, we obtain the desired regret bound
T T
> () = Lu(w) < By ) + 3 3 larl
t=1 t=1



6 Applications

6.1 Online (sub)-gradient descent

Let ¢(w) = 1 ||ng Then 1 is strong convex with respect to ||-||, and the dual norm is ||-||,. Suppose each
L, is L-Lipschitz, which implies ||g¢||, < L. Then the regret bound is

T
* 1 *
D (Lalwn) = Lo(w") < 5w —w |2+ 2712

t=1

flw* —wll,

Choosing n = o - to minimize the RHS gives

regret < |Jw* —wy ||, LVT.

Remark The O(v/T) regret bound immediately implies a O(ﬁ) convergence rate for the offline setting

where all L; = f. In particular, letting w = % Zle we, we have

N 1 I . w* — wy
o) - ) < 3 () - sy < 1l

t=1

where the first step above is by Jensen’s inequality.

6.2 Expoentiated gradient descent

Let W = Ay, and ¢(w) = Zj w;jlogw; be the negative entropy. Then 4 is strongly convex with respect to
[|-||;, with dual norm |[-|| .. Then the regret bound is

T T
1 77 2
; t(wr) w*)) < ; ku(w” [ wi) + 3 g llgell o
If in addition we take the initial iterate wy; = (é, e é) to be the uniform distribution, then one can verify
that Dgp,(w* || wy) <logd. Also, set n = W- Then the regret is
regret < \/Tlogd-mtax||gt|io. (6)

Remark Compared to online gradient descent, the dependence on the gradients g; is max; ||g;| ., instead
of max ||g¢||,- Thus exponentiated gradient descent can do better than gradient descent when the gradients
g are small in magnitude and not sparse.

6.3 Expert problem

Recall that l;; is the loss of expert j at time ¢, and that g, = I € {0,1}¢. Thus [|g;|| ., < 1. Plugging this
into the bound for exponentiated gradient descent gives

regret < /T'logd

Remark This regret bound is optimal for the expert problem. In comparison, gradient descent would get
v/T'd regret, which has an exponentially larger dependence on the dimension d.



Extensions

. We chose our step size 1 to be proportional to ﬁ This requires the time horizon to be known to the

algorithm. If T" is not known, one can use a varying step size 1y = % and prove essentially the same
guarantees (under a slightly stronger boundedness assumption; see Duchi’s notes.)

. Acceleration. If more is known about the loss function L;, then better regret bounds (in the online
setting) and convergence rates (in the offline setting) can be obtained.

e L; is smooth (gradient is Lipschitz): We have an improvement vT' — O(1) in regret, which
translates to an improvement L 1

.
VT 1

e I, is strongly convex: We have an improvement v/I' — log T in regret, and hence —= —

n
VT T
rate.

See Xinhua Zhang’s notes for details.

. So far, we assumed that we observe the losses of all the experts/arms, even those we did not choose/pull.
This is the full information setting. Next week, we will look at the “bandit information” setting,
where we only observe the loss of the expert/arm that we choose/pull, that is, we only see one entry
of VLt =gt = lt.
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