Lectures 21-22: Online Learning

Lecturer: Yudong Chen Scribe: Billy Jin, Miaolan Xie

Reading:

- Chapter 21 of Duchi's notes.
- Xinhua Zhang, short notes on mirror descent,
- Elad Hazan, "Introduction to Online Convex Optimization",

In these two lectures, we study online learning problems under the framework of online convex optimization. We give a few examples that fall into this framework. We then introduce a general algorithm called Online Mirror Descent for solving online convex optimization. We conclude by analyzing the regret of online mirror descent.

1 Online Convex Optimization

The setup can be described as a two-player sequential game:

- Let $W \subseteq \mathbb{R}^{d}$ be a convex parameter space.
- At each time t, player 1 (the learner) plays some $w_{t} \in W$.
- Player 2 (the adversary) then plays a loss function $L_{t}: W \rightarrow \mathbb{R}$, where L_{t} is convex.

Note that the learner commits to w_{t} before seeing L_{t}, whereas the adversary may adapt his choice of L_{t} to w_{1}, \ldots, w_{t}. The goal for the learner is to minimize regret, defined as

$$
\sum_{t=1}^{T} L_{t}\left(w_{t}\right)-\sum_{t=1}^{T} L_{t}\left(w^{*}\right)
$$

where $w^{*}:=\arg \min _{w \in W} \sum_{t=1}^{T} L_{t}(w)$ is the best fixed decision in hindsight.

1.1 Examples

Here are some examples of problems that fall into the framework of online convex optimization.

1. Online support vector machine: At each time t, the learner picks a vector $w_{t} \in \mathbb{R}^{d}$. Then, a data point $\left(x_{t}, y_{t}\right) \in \mathbb{R}^{d} \times\{ \pm 1\}$ is revealed, and the learner incurs loss $L_{t}\left(w_{t}\right)$, where $L_{t}(w)=$ $\max \left\{1-y_{t}\left\langle w, x_{t}\right\rangle, 0\right\}$. (This loss function is called the hinge loss.)
2. Online logistic regression: Same setup, except now the loss function is $L_{t}(w)=\log \left(1+e^{-y_{t}\left\langle w, x_{t}\right\rangle}\right)$. (This is the logistic loss.)
3. Expert prediction/adversarial bandit: There are d experts/arms. At each time t, each expert makes a prediction (for example "I predict the stock market will go up tomorrow"). At each time t, the learner chooses a weight vector $w_{t}=\left(w_{t 1}, \ldots, w_{t d}\right)$, where

$$
w_{t j}=\text { weight for expert } j=\text { probability of pulling arm } j .
$$

So the parameter space is $W=\Delta_{d}:=\left\{w \in \mathbb{R}^{d}: \sum_{j} w_{j}=1, w_{j} \geq 0\right\}$, which is the probability simplex in \mathbb{R}^{d}. Then losses

$$
l_{t j}=\mathbb{1}\{\text { expert } j \text { is wrong at time } t\}=\text { loss of arm } j \text { at time } t
$$

are revealed, and the learner incurs loss $L_{t}(w)=\left\langle w, l_{t}\right\rangle$. Note that $\nabla L_{t}(w)=l_{t}$.

2 Online Gradient Descent

Gradient descent extends naturally to an algorithm for online convex optimization. Online gradient descent does, at each iteration $t+1$:

$$
w_{t+1}=\operatorname{Proj}_{W}\left(w_{t}-\eta_{t} g_{t}\right)
$$

where η_{t} is the step size and $g_{t} \in \partial L_{t}\left(w_{t}\right)$. Note that this update is equivalent to

$$
w_{t+1}=\underset{w \in W}{\arg \min }\left\{\left\langle g_{t}, w\right\rangle+\frac{1}{2 \eta_{t}}\left\|w-w_{t}\right\|_{2}^{2}\right\}
$$

3 Bregman Divergence

We will next see how to extend gradient descent to a more general algorithm. First, we will need to introduce the notion of Bregman divergence. Let $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a differentiable convex function.

Definition 1 (Bregman Divergence). The Bregman divergence associated with ψ is a function B_{ψ} : $\mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined by

$$
B_{\psi}(w, v):=\psi(w)-\psi(v)-\langle\nabla \psi(v), w-v\rangle
$$

Remark By the convexity of ψ, the Bregman divergence B_{ψ} is always non-negative. One can think of $B_{\psi}(w, v)$ as a measure of "distance" between w and v; however, the Bregman divergence is not necessarily symmetric or satisfies the triangle inequality.

3.1 Examples

1. Euclidean distance. Let $\psi(w)=\frac{1}{2}\|w\|_{2}^{2}$. Then $B_{\psi}(w, v)=\frac{1}{2}\|w-v\|_{2}^{2}$.
2. Mahalanobis distance. Let $\psi(w)=\frac{1}{2} w^{\top} A w=: \frac{1}{2}\|w\|_{A}^{2}$, where $A \succcurlyeq 0$.

Then $B_{\psi}(w, v)=\frac{1}{2}(w-v)^{\top} A(w-v)=\frac{1}{2}\|w-v\|_{A}^{2}$.
3. KL-divergence. Let $\psi(w)=\sum_{j=1}^{d} w_{j} \log w_{j}$ be the negative entropy. Note that ψ is convex on \mathbb{R}_{+}^{d}. Then $B_{\psi}(w, v)=\sum_{j=1}^{d} w_{j} \log \frac{w_{j}}{v_{j}}=D_{\mathrm{KL}}(w \| v)$ for all $w, v \in \Delta_{d}$.

4 Online Mirror Descent (OMD)

This is a generalization of gradient descent using Bregman divergences. At iteration t :

$$
\begin{equation*}
w_{t+1}=\underset{w \in W}{\arg \min }\left\{\left\langle g_{t}, w\right\rangle+\frac{1}{\eta_{t}} B_{\psi}\left(w, w_{t}\right)\right\} \tag{1}
\end{equation*}
$$

Remark $\left\langle g_{t}, w\right\rangle+\frac{1}{\eta_{t}} B_{\psi}\left(w, w_{t}\right)$ is convex in w. Hence this is a convex optimization problem.

4.1 Special cases of OMD

Gradient descent $\quad \psi(w)=\frac{1}{2}\|w\|_{2}^{2}$
Exponentiated gradient descent This is online mirror descent with $W=\Delta_{d}, \psi(w)=\sum_{j} w_{j} \log w_{j}$, and $B_{\psi}(w, v)=D_{\mathrm{KL}}(w \| v)$. At iteration t :

$$
w_{t+1}=\underset{w \in W}{\arg \min }\left\{\langle g, w\rangle+\frac{1}{\eta_{t}} D_{\mathrm{KL}}\left(w \| w_{t}\right)\right\} .
$$

To explicit calculate w_{t+1}, we write the Lagrangian:

$$
L(w, \lambda, \tau)=\langle g, w\rangle+\frac{1}{\eta} \sum_{j=1}^{d} w_{j} \log \frac{w_{j}}{v_{j}}-\langle\lambda, w\rangle+\tau(\langle\mathbb{1}, w\rangle-1) .
$$

Here, $\lambda \in \mathbb{R}^{d}$ is the multiplier for the constraint $w \geq 0$ and $\tau \in \mathbb{R}$ is the multiplier for the constraint $\langle\mathbb{1}, w\rangle=1$. Taking $\frac{\partial}{\partial w} L(w, \lambda, \tau)=0$ gives

$$
w_{t+1, j}=v_{j} \exp \left(-\eta g_{j}+\lambda_{j} \eta-\tau \eta-1\right)>0 .
$$

Hence the constraint $w \geq 0$ is inactive, which implies $\lambda=0$. We choose τ to normalize w, giving

$$
\begin{align*}
w_{t+1} & =\left(\frac{w_{t i} \exp \left(-\eta_{t} g_{t i}\right)}{\sum_{j=1}^{d} w_{t j} \exp \left(-\eta_{t} g_{t j}\right)}\right)_{i=1, \ldots, d} \tag{2}\\
& \propto\left(\exp \left(-\sum_{k=1}^{t} \eta_{k} g_{k i}\right)\right)_{i=1, \ldots, d} \tag{3}\\
& =\operatorname{soft}-\operatorname{argmin}\left\{\sum_{k=1}^{t} \eta_{k} g_{k i}, i=1, \ldots, d\right\} . \tag{4}
\end{align*}
$$

Remark In the context of the expert problem, $g_{k i}$ is the loss of expert i at time k. Hence, $\sum_{k=1}^{t} g_{k i}$ is the total loss of expert i up to time t. Hence exponentiated gradient descent favors experts with low loss, but still assigns positive weight to every expert. This algorithm can thus be interpreted as a smoothed version of "follow the leader", where the weights are updated in an multiplicative fashion. (Variants of) exponentiated gradient descent is also known as multiplicative weight update (MWU), follow-the-regularized-leader (FTRL), fictitious play (FP), Hedge algorithm, and entropic mirror descent.

5 Analysis of Online Mirror Descent

We begin with some definitions.
Definition 2 (Strong convexity). ψ is strongly convex with respect to $\|\cdot\|$ if , for all v, w :

$$
\psi(w)-\psi(v)-\langle g, w-v\rangle \geq \frac{1}{2}\|w-v\|^{2}, \quad \text { for all } g \in \partial \psi(v) \text {. }
$$

This is equivalent to $B_{\psi}(w, v) \geq \frac{1}{2}\|w-v\|^{2}$ by definition of Bregman divergence.
Example 1. Let $\psi(w)=\sum_{j} w_{j} \log w_{j}$ be negative entropy. Then by Pinsker's inequality, we have

$$
\begin{equation*}
B_{\psi}(w, v)=D_{\mathrm{KL}}(w \| v) \geq \frac{1}{2}\|w-v\|_{1}^{2} . \tag{5}
\end{equation*}
$$

In other words, the negative entropy is strongly convex with respect to the ℓ_{1} norm.

Definition 3 (Dual norm). The dual norm of $\|\cdot\|$ is the norm $\|\cdot\|_{*}$ defined by

$$
\|y\|_{*}=\sup _{x:\|x\| \leq 1}\langle x, y\rangle
$$

Example 2. The dual norm of $\|\cdot\|_{2}$ is $\|\cdot\|_{2}$. The dual norm of $\|\cdot\|_{\infty}$ is $\|\cdot\|_{1}$. The dual norm of $\|\cdot\|_{\text {nuc }}$ (nuclear norm) is $\|\cdot\|_{\text {op }}$ (operator norm).
Theorem 1 (Regret of Online Mirror Descent). Suppose that ψ is strongly convex with respect to $\|\cdot\|$ with dual norm $\|\cdot\|_{*}$. Then online mirror descent with step size $\eta_{t} \equiv \eta$ satisfies

$$
\sum_{t=1}^{T}\left[L_{t}\left(w_{t}\right)-L_{t}\left(w^{*}\right)\right] \leq \frac{1}{\eta} B_{\psi}\left(w^{*}, w_{1}\right)+\frac{\eta}{2} \sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}
$$

Proof Recall that $w_{t+1}=\arg \min _{w \in W}\left\{\left\langle g_{t}, w\right\rangle+\frac{1}{\eta} B_{\psi}\left(w, w_{t}\right)\right\}$. By the optimality condition for convex optimization (negative gradient lies in the normal cone), we have

$$
\begin{aligned}
0 & \leq\left\langle g_{t}+\left.\frac{1}{\eta} \frac{\partial}{\partial w} B_{\psi}\left(w, w_{t}\right)\right|_{w=w_{t+1}}, w^{*}-w_{t+1}\right\rangle \\
& =\left\langle g_{t}+\frac{1}{\eta}\left(\nabla \psi\left(w_{t+1}\right)-\nabla \psi\left(w_{t}\right)\right), w^{*}-w_{t+1}\right\rangle
\end{aligned}
$$

Therefore, we have

$$
\begin{array}{rlrl}
L_{t}\left(w_{t}\right)-L_{t}\left(w^{*}\right) & \leq\left\langle g_{t}, w_{t}-w^{*}\right\rangle & & \text { convexity of } L_{t} \\
& =\left\langle g_{t}, w_{t+1}-w^{*}\right\rangle+\left\langle g_{t}, w_{t}-w_{t+1}\right\rangle & & \\
& \leq \frac{1}{\eta}\left\langle\nabla \psi\left(w_{t_{1}}\right)-\nabla \psi\left(w_{t}\right), w^{*}-w_{t+1}\right\rangle+\left\langle g_{t}, w_{t}-w_{t+1}\right\rangle & \text { last display equation } \\
& =\frac{1}{\eta}\left[B_{\psi}\left(w^{*}, w_{t}\right)-B_{\psi}\left(w^{*}, w_{t+1}\right)-B_{\psi}\left(w_{t+1}, w_{t}\right)\right]+\left\langle g_{t}, w_{t}-w_{t+1}\right\rangle &
\end{array}
$$

where the last step follows from direct calculation using definition and is sometimes known as the "three-point identity". Summing over $t=1, \ldots, T$, the sum telescopes, and we get

$$
\begin{aligned}
\sum_{t=1}^{T}\left(L_{t}\left(w_{t}\right)-L_{t}\left(w^{*}\right)\right) & \leq \frac{1}{\eta}\left[B_{\psi}\left(w^{*}, w_{1}\right)-B_{\psi}\left(w^{*}, w_{T+1}\right]+\sum_{t=1}^{T}\left[-\frac{1}{\eta} B_{\psi}\left(w_{t+1}, w_{t}\right)+\left\langle g_{t}, w_{t}-w_{t+1}\right\rangle\right]\right. \\
& \leq \frac{1}{\eta} B_{\psi}\left(w^{*}, w_{1}\right)+\sum_{t=1}^{T}\left[-\frac{1}{\eta} B_{\psi}\left(w_{t+1}, w_{t}\right)+\left\langle g_{t}, w_{t}-w_{t+1}\right\rangle\right]
\end{aligned}
$$

To control the last RHS term, we observe that

$$
\begin{aligned}
\left\langle g_{t}, w_{t}-w_{t+1}\right\rangle & \leq\left\|g_{t}\right\|_{*}\left\|w_{t}-w_{t+1}\right\| & & \text { definition of dual norm } \\
& \leq \frac{\eta}{2}\left\|g_{t}\right\|^{2}+\frac{1}{2 \eta}\left\|w_{t}-w_{t+1}\right\|^{2} & & a b \leq \frac{1}{2}\left(a^{2}+b^{2}\right) \\
& \leq \frac{\eta}{2}\left\|g_{t}\right\|_{*}^{2}+\frac{1}{\eta} B_{\psi}\left(w_{t+1}, w_{t}\right) & & \text { strong convexity of } \psi
\end{aligned}
$$

Combining pieces, we obtain the desired regret bound

$$
\sum_{t=1}^{T}\left(L_{t}\left(w_{t}\right)-L_{t}\left(w^{*}\right)\right) \leq \frac{1}{\eta} B_{\psi}\left(w^{*}, w_{1}\right)+\frac{\eta}{2} \sum_{t=1}^{T}\left\|g_{t}\right\|_{*}^{2}
$$

6 Applications

6.1 Online (sub)-gradient descent

Let $\psi(w)=\frac{1}{2}\|w\|_{2}^{2}$. Then ψ is strong convex with respect to $\|\cdot\|_{2}$, and the dual norm is $\|\cdot\|_{2}$. Suppose each L_{t} is L-Lipschitz, which implies $\left\|g_{t}\right\|_{2} \leq L$. Then the regret bound is

$$
\sum_{t=1}^{T}\left(L_{t}\left(w_{t}\right)-L_{t}\left(w^{*}\right)\right) \leq \frac{1}{2 \eta}\left\|w^{*}-w_{1}\right\|_{2}^{2}+\frac{\eta}{2} T \cdot L^{2}
$$

Choosing $\eta=\frac{\left\|w^{*}-w_{1}\right\|_{2}}{L \sqrt{T}}$ to minimize the RHS gives

$$
\text { regret } \leq\left\|w^{*}-w_{1}\right\|_{2} L \sqrt{T}
$$

Remark The $O(\sqrt{T})$ regret bound immediately implies a $O\left(\frac{1}{\sqrt{T}}\right)$ convergence rate for the offline setting where all $L_{t} \equiv f$. In particular, letting $\bar{w}=\frac{1}{T} \sum_{t=1}^{T} w_{t}$, we have

$$
f(\bar{w})-f\left(w^{*}\right) \leq \frac{1}{T} \sum_{t=1}^{T}\left[f\left(w_{t}\right)-f\left(w^{*}\right)\right] \leq \frac{\left\|w^{*}-w_{1}\right\|_{2}}{\sqrt{T}}
$$

where the first step above is by Jensen's inequality.

6.2 Expoentiated gradient descent

Let $W=\Delta_{d}$, and $\psi(w)=\sum_{j} w_{j} \log w_{j}$ be the negative entropy. Then ψ is strongly convex with respect to $\|\cdot\|_{1}$, with dual norm $\|\cdot\|_{\infty}$. Then the regret bound is

$$
\sum_{t=1}^{T}\left(L_{t}\left(w_{t}\right)-L_{t}\left(w^{*}\right)\right) \leq \frac{1}{\eta} D_{\mathrm{KL}}\left(w^{*} \| w_{1}\right)+\frac{\eta}{2} \sum_{t=1}^{T}\left\|g_{t}\right\|_{\infty}^{2}
$$

If in addition we take the initial iterate $w_{1}=\left(\frac{1}{d}, \ldots, \frac{1}{d}\right)$ to be the uniform distribution, then one can verify that $D_{\mathrm{KL}}\left(w^{*} \| w_{1}\right) \leq \log d$. Also, set $\eta=\sqrt{\frac{\log d}{2 T \max _{t}\left\|g_{t}\right\|_{\infty}^{2}}}$. Then the regret is

$$
\begin{equation*}
\text { regret } \leq \sqrt{T \log d \cdot \max _{t}\left\|g_{t}\right\|_{\infty}^{2}} \tag{6}
\end{equation*}
$$

Remark Compared to online gradient descent, the dependence on the gradients g_{t} is $\max _{t}\left\|g_{t}\right\|_{\infty}$ instead of $\max _{t}\left\|g_{t}\right\|_{2}$. Thus exponentiated gradient descent can do better than gradient descent when the gradients g_{t} are small in magnitude and not sparse.

6.3 Expert problem

Recall that $l_{t j}$ is the loss of expert j at time t, and that $g_{t}=l_{t} \in\{0,1\}^{d}$. Thus $\left\|g_{t}\right\|_{\infty} \leq 1$. Plugging this into the bound for exponentiated gradient descent gives

$$
\text { regret } \leq \sqrt{T \log d}
$$

Remark This regret bound is optimal for the expert problem. In comparison, gradient descent would get $\sqrt{T d}$ regret, which has an exponentially larger dependence on the dimension d.

7 Extensions

1. We chose our step size η to be proportional to $\frac{1}{\sqrt{T}}$. This requires the time horizon to be known to the algorithm. If T is not known, one can use a varying step size $\eta_{t}=\frac{1}{\sqrt{t}}$ and prove essentially the same guarantees (under a slightly stronger boundedness assumption; see Duchi's notes.)
2. Acceleration. If more is known about the loss function L_{t}, then better regret bounds (in the online setting) and convergence rates (in the offline setting) can be obtained.

- L_{t} is smooth (gradient is Lipschitz): We have an improvement $\sqrt{T} \rightarrow O(1)$ in regret, which translates to an improvement $\frac{1}{\sqrt{T}} \rightarrow \frac{1}{T}$ in rate.
- L_{t} is strongly convex: We have an improvement $\sqrt{T} \rightarrow \log T$ in regret, and hence $\frac{1}{\sqrt{T}} \rightarrow \frac{\log T}{T}$ in rate.

See Xinhua Zhang's notes for details.
3. So far, we assumed that we observe the losses of all the experts/arms, even those we did not choose/pull. This is the full information setting. Next week, we will look at the "bandit information" setting, where we only observe the loss of the expert/arm that we choose/pull, that is, we only see one entry of $\nabla L_{t}=g_{t}=l_{t}$.

