
ORIE 7790 High Dimensional Probability and Statistics Lecture 24–25 - 05/07,12/2020

Lecture 24–25: Uniform Laws and Localization
Lecturer: Yudong Chen Scribe: Lijun Ding

In this lecture, we will establish certain uniform laws via the localization technique. These bounds enable
us to get sharper bounds on the testing error based on bounds for the training error.

Relevant readings are the following:

• Wainwright’s book: 14.1, 14.2 (optional: 14.3)

• Seminal paper by Bartlett et al: https://arxiv.org/pdf/math/0508275.pdf

• Recent paper using localization to analyze SDP methods: https://arxiv.org/pdf/2004.01869.pdf
(“fixed point” there means ”critical radius” in our terminology)

• For a more systematic treatment: Vladimir Koltchinskii, “Oracle Inequalities in Empirical Risk Mini-
mization and Sparse Recovery Problems”

1 From Training Error to Test Error

Recall the setup for non-parametric regression (Lecture 14 -15):

yi = f∗(xi) + σwi.

Here xi
iid∼ P, i = 1, . . . , n are the feature vectors, and wi

iid∼ N(0, 1), i = 1, . . . , n are the noise. The notation
P denotes a certain probability distribution on the space X that x lives in. We assume that the function f∗

is in some function class F . For example, F may be the set of all real valued 1-Lipschitz functions on [0, 1]
with function value 0 at 0.

We can obtain an estimate f̂ of f∗ via non-parametric least-squares:

f̂ = arg min
f∈F

1

n

n∑
i=1

(yi − f(xi))
2
.

As explained in Lectures 14–15, this optimization problem is often tractable, e.g., when F is a certain
parametric family, the Lipschitz function class, or the convex Lipschitz function class. We also derived
bounds on the empirical error

‖f̂ − f∗‖2n
∆
=

1

n

n∑
i=1

(
f̂(xi)− f∗(xi)

)2

=

∫
X

(
f̂ − f∗

)2

Pn(dx), (1)

where the distribution Pn(x)
∆
=
∑n
i=1 δxi(x) is the empirical distribution of {xi}ni=1.

The quantity in (1) is (a denoised version of) the training error. What we are really interested in is the
test/population error:

‖f̂ − f∗‖22
∆
= E

(
f̂(X)− f∗(X)

)2

=

∫
X

(
f̂ − f∗(x)

)2

P(dx). (2)

Here X is considered as a fresh sample from P that is independent of the data (xi, yi), i = 1, . . . , n. We
would like to see how to convert bounds on training error to test error. This requires some uniform laws
over the function class F as f̂ here correlates with the data (xi, yi), i = 1, . . . , n.
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2 Uniform Law via Localization

We first explain why we want a uniform law of large numbers. If the f̂ in (1) were a fixed f ∈ F , letting
g = f−f∗ we can use the strong law of large number to conclude that the training error ‖g‖n in (1) converges
to the testing error ‖g‖2 in (2) almost surely and in probability; that is,

‖g‖2n
a.s. and p−−−−−−→ ‖g‖22.

Using Hoeffding’s inequality we can further establish non-asymptotic high probability bounds on the differ-
ence between the two quantities. However, since f̂ is not fixed but random and depends on the data (yi, xi),
we need some uniform bound for all f ∈ F . By recentering F , we may assume 0 ∈ F . In this case, the
results from Lec 12–13 established such a uniform bound using Rademacher complexity:

sup
g∈F

∣∣‖g‖2n − ‖g‖22∣∣ . Rn(F)
∆
= E{xi}ni=1,ε

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣ . (3)

This time, we derive tighter bounds using localized Rademarcher complexity:

Rn(δ;F)
∆
= E{xi}ni=1,ε

sup
f∈F,‖f‖2≤δ

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣ . (4)

Note the extra constraint ‖f‖2 ≤ δ under the supremum.

2.1 Main Theorem

We shall assume the following two conditions.

A1. The function class F is star-shaped: f ∈ F ⇒ αf ∈ F ,∀α ∈ [0, 1].

A2. The function class F is b-uniformly bounded: ‖f‖∞ ≤ b, ∀f ∈ F .

Theorem 1. Suppose that A1 and A2 hold. Let δn > 0 be any solution to Rn (δ;F) ≤ δ2

b . Then

P
(
∀f ∈ F :

∣∣‖f‖2n − ‖f‖22∣∣ ≤ 1

2
‖f‖22 +

δn
2

)
≥ 1− c exp(−cnδ2

n/b
2). (5)

If in addition nδ2
n ≥ 2

c log log 1
δn
, then

P
(
∀f ∈ F :

∣∣‖f‖2n − ‖f‖22∣∣ ≤ c0δn) ≥ 1− c′ exp(−c′nδ2
n/b). (6)

The constants c, c′ in the theorem above are universal constants. We defer the proof to Section 4.
We remark that same bound holds with the localized empirical Redemacher complexity:

R̂n (δ,F)
∆
= E{εi}ni=1

sup
f∈F,‖f‖n≤δ

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣ . (7)

The reason is that the minimal solutions δ̂, δn to R̂n(δ,F) ≤ δ2

b and Rn(δ,F) ≤ δ2

b , respectively, satisfy

δ̂ ∈ [cδn, Cδn] with probability at least 1 − exp(−c1nδ2
n/b) for some universal c, c1, c2, C > 0. See the

appendix of Chapter 14 of Wainwright’s book.
The significance of Theorem 1 might be understood via the following examples.

3 Examples

We shall illustrate the use of Theorem 1 in the examples of quadratic function class and convex regression.
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3.1 Example 1: Quadratic Function Class

Consider the function class

F2
∆
=
{
fθ : [−1, 1]→ R with x 7→ θ0 + θ1x+ θ2x

2, θ ∈ R3, ‖fθ‖∞ ≤ 1
}
.

We assume the feature X follows the uniform distribution on [−1, 1] denoted as P.

Without localization: First, we derive a bound without localization. By Dudley’s Entropy Integral
bound, we have

R̂n(δ,F) ≤ R̂n(F) .
1√
n
, ∀{xi},

where R̂n(F) is the empirical Radamacher complexity. The detailed proof is left as an exercise. Hence, using
Theorem 1, w.h.p.: ∣∣‖f‖2n − ‖f‖22∣∣ . ‖f‖22 +

1√
n
, ∀f ∈ F2.

We get a 1/
√
n rate, often known as a “slow rate”.

With localization: Next, we use the localization technique. We first reparametrize F2 using orthonormal
(Legendre) basis:

φ0(x) =
1√
2
, φ1(x) =

√
3

2
x, φ2(x) =

√
5

8

(
3x2 − 1

)
,

which satisfies 〈φj , φk〉
∆
=
∫ 1

−1
φj(x)φk(x)dx =

{
1 j = k,

0 j 6= k.
Any function in F2 has expansion fγ(x) =

γ0φ0(x) + γ1φ1(x) + γ2(x) for some γ = (γ0, γ1, γ2) ∈ R3, with ‖fγ‖2 = ‖γ‖2.
Define the (random) feature matrix M = [φj(xi)] ∈ Rn×3. Let us compute the localized Rademacher

complexity:

Rn (δ;F) = E{xi,εi}ni=1
sup

fγ∈F,‖f‖2≤δ

∣∣∣∣∣ 1n
n∑
i=1

εifγ(xi)

∣∣∣∣∣
(a)

≤ E sup
‖γ‖≤δ

∣∣∣∣ 1nε>Mγ

∣∣∣∣
(b)

≤ δ

n
E‖ε2M‖2

(c)

≤ δ

n

√
E‖ε>M‖22.

The first step (a) is due to orthogonality of γ and we actually enlarge the function class a bit as we don’t
require ‖fγ‖∞ ≤ 1 in this step. The second step (b) is due to Cauchy-Schwarz. The last step (c) is due to
Jensen’s inequality.

But

E‖ε>M‖22 = E{xi}ni=1
Tr
(
M>Eεεε>M

) Eεε>=I
= E{xi}ni=1

Tr
(
M>M

) orthonormality
= 3n.

So Rn(δ;F2) . δ√
n

and the critical radius δn can be chosen as δn � 1√
n

. Hence, using Theorem 1, we find

that with high probability: ∥∥f‖2n − ‖f‖22∣∣ . ‖f‖22 +
1

n
.

We get a “fast rate” of 1/n.
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3.2 Example 2: Convex Regression

Recall the setup of convex regression:
yi = f∗(xi) + σwi,

where xi
iid∼ P, wi

iid∼ N(0, 1), and the function f∗ is in the set of all 1-Lipschitz convex functions Fconv:

Fconv = {f : [0, 1]→ R, f(0) = 0, f is convex and 1-Lipschitz}.

In Lecture 14-15, we showed ‖f̂ − f∗‖2n ≤
(

1
n

)4/5
. Here we show that ‖f̂ − f∗‖n is close to ‖f̂ − f∗‖2. To

apply our theorem, we shall recenter F and consider

F∗conv
∆
= Fconv − f∗.

The centered function class F∗conv is a star-shaped and 2-uniformly bounded. By chaining and Dudley (see
Lemma 3 in Lecture 14-15), we have

R̂ (δ,F∗conv) ≤ 64√
n

∫ δ

δ2

4

√
logN (t,Bn(δ,F∗conv), ‖ · ‖n)︸ ︷︷ ︸

Nδ(t)

dt+
δ2

4
. (8)

Using the fact that ‖ · ‖n ≤ ‖ · ‖∞, we have

logNδ(t) ≤ logN (t,Bn(δ,F∗conv), ‖ · ‖∞)
(a)

.

√
1

t
. (9)

The step (a) can be found in Lecture 14-15, Section 6.4. Thus by combining (8) and (9), we find that

R̂ (δ,F∗conv) ≤ 64√
n

∫ δ

δ2

4

(
1

t

) 1
4

dt+
δ2

4
=

64× 4

3
√
n
δ

3
4 +

δ2

4
.

Hence, we conclude that δ̂n �
(

1
n

) 2
5 solves R̂n (δ;F∗conv) ≤ δ2

2 .

By Theorem 1 applied to f̂ − f∗ ∈ F∗conv, we have w.h.p.∣∣∣‖f̂ − f∗‖2 − ‖f̂ − f∗‖2n∣∣∣ ≤ 1

2
‖f̂ − f∗‖22 + c

(
1

n

) 4
5

⇒ ‖f̂ − f∗‖22 ≤ 2‖f̂ − f∗‖2n + 2c

(
1

n

) 4
5

.

Recall that the training error satisfies ‖f̂ − f∗‖2n ≤
(

1
n

)4/5
. Hence training error and test error are of the

same order:

‖f̂ − f∗‖22 .

(
1

n

) 4
5

.

This bound is in fact minimax optimal.

4 Proof of Theorem 1

By re-scaling of the function f and the function class, we may assume without loss of generality that b = 1,
and that δn solves Rn(δ;F) ≤ δ

16 .
For each r ∈ [0, 1], define the ball

B2(r;F)
∆
= {f ∈ F : ‖f‖2 ≤ r},
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and the random variable
Z(r)

∆
= sup
f∈B2(r,F)

∣∣‖f‖22 − ‖f‖2n∣∣ .
Define the “bad event”:

E ∆
=

{
∃f ∈ F :

∣∣‖f‖22 − ‖f‖2n∣∣ > 1

2
‖f‖22 +

δ2
n

2

}
,

and the auxiliary event:

A(r)
∆
=

{
Z(r) ≥ r2

2

}
.

Claim 1. E ⊂ A(δn).

Proof Indeed, since event E happens, we know there is some f ∈ F such that ‖
∣∣‖f‖22 − ‖f‖2n∣∣ ≥ 1

2‖f‖
2
2 +

δ2
n

2 ‖. Consider the following two cases based on ‖f‖2 and δn:

(i) This f satisfies ‖f‖2 ≤ δn, and so f ∈ B2(δn,F). Since f also satisfies that ‖
∣∣‖f‖22 − ‖f‖2n∣∣ ≥

1
2‖f‖

2
2 +

δ2
n

2 ‖, we know that the event A(δn) happens.

(ii) Otherwise, we should have ‖f‖2 > δn. Now we may scale f and consider

f̃
∆
=

δn
‖f‖2

f ∈ F as F is star-shaped.

This f̃ satisfies ‖f̃‖ = δn by definition. Combining the properties of f̃ with ‖
∣∣‖f‖22 − ‖f‖2n∣∣ ≥ 1

2‖f‖
2
2 +

δ2
n

2 . We find that
∣∣∣‖f̃‖22 − ‖f̃‖2n∣∣∣ > 1

2δ
2
n. Hence A(δn) happens again in this case.

In both cases, the event A(δn) happens as claimed.

Thus, the theorem is proved if we can establish the following bound on the probability of event A(δn):

P (A(δn)) = P
(
Z(δn) ≥ δ2

n

2

)
≤ 2 exp(−cnδ2

n).

The proof follows a standard procedure: first bound the expectation of Z(r) and then show concentration.

Expectation We bound the expectation via symmetrization:

E [Zn(δn)] ≤ 2E

[
sup

f∈B2(δn,F)

∣∣∣∣∣ 1n
n∑
i=1

f2(xi)

∣∣∣∣∣
]

(a)

≤ E

[
sup

f∈B2(δn,F)

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣
]

= 4Rn(δn)

(b)

≤ δ2
n

4
.

(10)

Here in step (a), we uses the fact that F is 1-uniformly bounded as well as the Ledoux-Talagrand contraction
principle. We use the definition of δn in the last step (b).
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Concentration Take an arbitrary f ∈ B2 (δn,F). We have ‖f‖∞ ≤ 1, and so

‖ f2 − E[f2(X)]︸ ︷︷ ︸
∆
=g

‖∞ ≤ 1.

Here X follows the distribution of the features xi. The variance of g is bounded by

Var(g) ≤ E(f4(X))
(a)

≤ E[f2] = ‖f‖22 ≤ δ2
n.

The step (a) holds because ‖f‖∞ ≤ 1. We shall make use of Talagrand’s Functional Bernstein inequality.
This is a refinement of Functional Hoeffding introduced in Lecture 5-6 Theorem 5.

Theorem 2 (Talagrand’s Functional Bernstein). Suppose G is b-uniformly bounded and Z
∆
= supg∈G

1
n

∑n
i=1 g(Xi)

for some iid Xi. Then

P (Z ≥ E[Z] + t) ≤ 2 exp

(
−nt2

8eE[Σ2] + 4bt

)
,

where Σ2 = supg∈G
1
n

∑n
i=1 g

2(Xi). Moreover,

E(Σ2) ≤ sup
g∈G

E(g2) + 2bE(Z).

Applying Functional Bernstein with t =
δ2
n

4 yields

P
(
Z(δn) ≥ E[Z(δn)] +

δ2
n

4

)
≤ 2 exp

(
−nδ4

n

c(δ2
n + δ2

n + δ2
n

)
= 2e−cnδ

2
n .

Combining expectation and concentration bounds proves the first inequality (5) in Theorem 1.

See Wainwright’s book for the second inequality (6) in Theorem 1.
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