ORIE 7790 High Dimensional Probability and Statistics Lecture 5-6 - 02/04-06,/2020

Lectures 5—6: Concentration for Lipschitz Functions

Lecturer: Yudong Chen Scribe: Sean Sinclair, Connor Lawless

Reading;:
e M. J. Wainwright, “High-dimensional statistics: A non-asymptotic viewpoint”, Section 3.1.

e J. Duchi, “Lecture notes for Statistics 311/Electrical Engineering 377: Information Theory and Statiscs”,
Section 3.3.

e R. Vershynin, “High dimensional Probability”, Section 5.

1 Brief Review

Last class we discussed concentration inequalities for the case when X = (X1,...,X,,) is a random vector
with independent coordinates. We showed concentration results for the two cases when:

F(X1,., X)) = %Z (X: - E[X)]),

i=1

f(X17"‘7X77«) = HXlﬂ"'ﬂXnHQ'

2 This Week’s Goal

The main goal of today’s class will be to extend the result to functions which are L-Lipschitz and separately
convex.! In particular, we will be interested in showing the following:

Theorem 1. Let X1,..., X, be independent random variables each supported on [a,b]. Further let f : R™ —
R be separately conver and L-Lipschitz. Then for allt >0
t2
Prif(X1,...,.Xn) —E[f(X1,...,Xp)] >t < - .
T[f( 1 ) ) [f( 1 )] } exp( 4L2(b_a)2)

We start by considering a few remarks of the theorem.
Remark

e A function f:R™ — R is said to be separately convex when the function zp — f(z1,...,Tk,...,Tn)

is convex for fixed (z; : j # k).
e If f is convex then f is also separately convex.
e fis L-Lipschitz when |f(z) — f(y)| < L||z — y||, for any z,y € R™.

e Theorem 1 is considered dimension-free: the concentration holds for a quantity independent of n.

For the proof we will use the Entropy Method. We need to show that for X = (Xi,...,X,,) that the
(upper tail of) random variable f(X) is sub-Gaussian with parameter 02 = 2L?(b — a)?. Afterwards we can
use the standard sub-Gaussian tail bound to obtain the result. To show that f(X) is sub-Gaussian we will
bound the moment generating function E [e’\f X )]. The proof will follow in two main steps:

1 Reading: Sec 3.1 of Wainwright book. Also relevant: Duchi notes Sec 3.3 and Vershynin HDP book Sec 5.



Step 1: Show the result for n = 1. This will be done with a Herbst argument, relating the MGF of a
random variable to its entropy.

Step 2: Tensorize the result for general n.

3 Entropy

Before starting the proof we begin with some notation and preliminary lemmas. We will start by showing
the case when n = 1.

Definition 1. For a convex function ¢ : R — R, the ¢p-entropy of Z is

Remark
e By Jensen’s inequality and the convexity of ¢, we always have that Hy,(Z) > 0.
e Specializing ¢(u) = u? you obtain that Hy(Z) = Var[Z].

e Taking ¢(u) = —log(u) then a straightforward calculation shows that Hy,(e*X) = log(Mx (\)) where
Mx(X) := E [e*] is the moment generating function. Thus, Hg(e*X) recovers the log moment
generating function.

We will fix ¢(u) = ulog(u) for the rest of the lecture and omit the subscript ¢ in the bottom of Hy.
After applying it to e’ we have that
H(EM)=E [e/\X log(e)‘X)} —-E [e/\X] log (E [e/\X])
=E[AXe*] —E [e*¥] log (E [e*X])
=AM (A) — Mx (\) log(Mx ().

Notice that if we take X ~ N(0,02) then after plugging in the moment generating function we get that

1
H(eM) = 5)\20'2Mx(/\).
Lemma 1 (Herbst Argument). If H(e*X) < 1A\262Mx (\) for all A > 0 then E [XX—ERXD] < ez for
all A > 0. In particular, X satisfies the sub-Gaussian MGF bound for A > 0.

Proof From before we have by assumption that

Now define G(X) = 1 log(Mx (X)). Moreover, limy_,0 G(A) = E[X] by the derivatives of the MGF yielding

the moments. We thus extension to G(0) = E[X]. Then by an application of the chain rule
1M log(Mx (V)
A Mx (M) A2

G'(\)

Rewriting the original inequality in terms of G gives that G’(\) < 102, This differential equation has a

known solution that 1
G(\) - G(0) < 50%.



Thus we find that

1 1
T log(Mx(3) —E[X] < 50”A
1
= log(Mx(\) — AE[X] < 50%2
> E [AXE)] < 25202
-2
as needed. O

We next show the following result, which relates the entropy of g(X) to its derivative and MGF.

Lemma 2. If X is supported on [a,b] and g is a convex function then
H(MX) < %V(b —a)’E [g'(X)%*g(X)] .

Proof We use a symmetrization argument. Let Y be an independent copy of X. Then

0] 0] (e ]

H(eMX)) = E [Ag(X)eMX) | —
g(X0)MO] — B [20] 10g (B [2)])

(X)
=E |\g(X)

<E [)\g(X)e’\g(X)} —E [e’\g(X))\g(Y)} by Jensen’s inequality and independence of X and Y
(X)

>

_)\g X)er(X) _ eAg(X))\g(y)}
1
= E [(Ag(3X) = Ag(1))(eX) — 290)]

=B [(Ag(X) = MgV — A0 005 ]

The second to last line comes from the fact that X and Y are independent. The last line is from noticing
that the terms on the inside are non-negative and symmetric, and so we can decompose the expectation into
the two equal-sized portions from when g(X) > g(Y) and other way around.

However, a simple fact shows that e — e* < e*(s — t). Rearranging this inequality shows that

(s = t)(e® = eNpezy < (5 = 1)* Lz
We apply the above inequality where s = Ag(X) and ¢t = Ag(Y) to get that
H(99) < B [¥(9(X) — g(V) 2 Ly 5000
= XE [(9(X) — g(¥))2M My 0050]
< AR [g’(X)Q(X _ Y)ZG/\Q(X)ﬂ[g(X)Zg(Y)]}
< %)\Q(b — )’ [¢/(X)2eM)].

In the second to last line we used the definition of the derivative of a convex function, and the last line that
X and Y are supported in [a,b] and a symmetrization argument again. O

Using these facts we are now ready to show Theorem 1 for the case when n = 1.



Proof As stated earlier, it suffices to show that f(X) = f(X;) is sub-Gaussian with parameter o2 =
2L2(b — a)?. However, by Lemma 2 since f is convex we know that

H(M™) < %/\z(b — )’ [f/(X)2eM ).

As f is L-Lipschitz we know max, |f’(z)| < L and so this can be bounded by 2\?L?(b—a)?E [e*(X)]. Thus
we find that H (e ™)) < IX2L2(b — a)?Mx(\). By Lemma 1 this shows that f(z) is sub-Gaussian with
parameter 02 = 2L2(b — a)?. O

4 Tensorization

We now start to show the more general case by a tensorization argument. We start with some notation. For
a vector v € R" set x_p = (2; | i # k) € R*~L. For fixed x_j, define f : R — R by

fi(@e) = f(og, ).
We define the conditional entropy for a random variable X, as
H(ekfk(xk) | z_p) = H(eAf(ka—k)).
Notice here that the only randomness is X as x_j is fixed.

Lemma 3 (Tensorization of Entropy). If X = (X1,...,X,,) has independent coordinates then
HEM) <Y E {H(em(xw | ka)] .
k=1

Before proving the Lemma, we will need the following claim,

Claim 1 (Variational Representation of Entropy).
H(eM)) = sup {E [g(X)e)‘f(X)} |E [eg(X)] < 1}.
g
Proof We first show that the left hand side is upper bounded by the right hand side. Consider the function
g(z) = Af(z) — log (E [e*(X)]). Then

H(N X)) =B [AF(X)eN |~ [M)] 1og (B [M])

=E [g(X)e/\f(X)} .

Noticing that E [eg(X )] =1 the first inequality follows.
For the other direction consider the function ©(u) = wlog(u) — u. Then using the fact that eV is the
Fenchel-conjugate of © we have that

O(u) = sgp{uy —eY}



However,
H(NX)) =E [@(e/\f(X))} _9 (E [eAﬂX)D
—E [sl;pye”(x) ~ ey] -0 (E {eAf(X)D
- Sng {g( X)) eg(X)} _E [eAﬂX)] log (E [e/\f(X)D +E [e/\f(x)}
= suplp {@(X) —log (E [eAﬂX)D e/\f(X)} g [eg(X)] L E {ekf(X)}
=supE {Q(X)e”(x)} +E [e)‘f(x)} (1-E {e)‘g(x)})
g

> sup {E [Q(X)ekf(x)} |E {eg(x)} < 1},

where in the second to last line we defined g(z) = j(z) — log (E [e*(X)]). O

We now complete the proof for Lemma 3.
Proof Let g be any function satisfying E [eg(X)] < 1. We also define X', and gF (X}) as follows:

X;L:(Xj,Xj+1,...7Xn), j:].,...,'fL

xp) = log LS XE]L
= |0 =1,...,n.
g k gE [eg(X)|Xk+1]
Note that by construction, we get:
> gM(Xi) = g(X) —logE |7 | = g(X). (1)

We also have:

Com E [e9(X) Xp 9(X) | x
E |:egk(Xk)|X_k:| — %‘ k| = [ex—|k+1] 1, (2)
E [esO1 X ] E [esO|X7, ]
where we used the fact that by independence E [E [-|X7]|X_] = E [| X/ ,] = E [E[-|X},,] [X_] Combin-
ing this together we find that
n
E[g(x)eM @] < 3B [¢H(xpeM )] by (1)
k=1
~-SE {]E [gk(X,geAﬂXHX,kH
k=1
<Y E [H(e”(x)|X,k)} . by (1) and Claim 1
k=1
Taking the supremum over g we conclude the proof:
(M) <3 E [ (N )] ka)] .
k=1
O



We can now finish our proof of Theorem 1.
Proof By Lemma 2:

H(e’\f(X)|X_k) < /\Q(b— a)2E _f’;(Xk_)QeAfk(Xk) | X_k} .

By Lemma 3:

H(MN)Y <22 (b —a)’E Zf,;(Xk)Qe}‘f(X)]
Lk=1

= N (b= a’E [IVS(X)[3e ]
< A\2(b—a)2L%E [eAf(X)} :

Combining this result with Lemma 1 we conclude that f(X) satisfies the 2L?(b — a)? sub-Gaussian upper
tail bound as needed. O

While we used that f is separately convex to prove Theorem 1, if we impose the stronger assumption of
convexity we can obtain the following two-sided inequality (note that this stronger assumption is required
for a two-sided bound):

Theorem 2. Let X1,..., X, be independent random variables each supported on [a,b]. Further let f : R" —
R be convexr and L-Lipschitz. Then ¥t > 0
t2
P X, .., X)) —Elf(Xq,....X)]| >t <2 —_— .
IACEL X0) = E LK Xl 2 6 < 200 (= s )

Note that the convexity assumption cannot be dropped in general; see Ledoux and Talagrand 1991, ppl7.
Furthermore, if X; are distributed normally, we no longer need the convexity assumption resulting in the
following theorem:

Theorem 3. Let X1, ..., X, be independent random variables each distributed N'(0,1). Further let f : R™ —
R be L-Lipschitz. Then ¥t > 0

Prif(Xy,.... Xn) —E[f(X1,..., Xn)] [ 2 1] < 2exp <_2tL2> )

We can compare these results to the bounded difference (aka McDiarmid’s) inequality.

Theorem 4 (Bounded Difference Inequality). Let X1, ..., X, be independent random variables. Further let
f:R™ = R satisfy the bounded difference property:

|f(@r, 2 ) = flay, op)| < Ly for all k,xp,x), .

Then for allt >0,

2
Prif(Xy,.... Xn) =E[f(X1,.... Xp)] [ 2 1] < 2exp <_Z"2tL2> .
k=11%

In many problems Y ;_, L? > L?, and thus Theorem 4 is much weaker than Theorems 1, 2, and 3.

5 Applications

We now turn our attention to some applications of these inequalities.



5.1 Concentration of Norm

Our first application is the concentration of norms of random vectors, which we have looked at in last lecture.
Start by noting that norms are convex, and 1-Lipschitz by the triangle inequality:

Xy = (Y1 [ < 12X =Yl -
Thus if the X;’s are bounded or Gaussian, by Theorem 2 or 3 we have || X|l2 — E[||X]2] is O(1) sub-

Gaussian. If the X;’s are bounded, the norm also satisfies the bounded difference property:

Nzt @hy @l = 21, @y @y | < ok — 2| = O(1).

Thus by using the bounded difference inequality, we get that the norm is O(n) sub-Gaussian — a much
weaker result.

5.2 Max Singular Value

Next let’s consider a random matrix X € R"*™, where X ; is independently distributed and either bounded
or Gaussian. We define the operator norm (the largest singular value) as follows:

HX”ozo =o01(X)= sup uT Xw.
llull2<1,[[v]l2<1

Note that the operator norm is convex (maximum of affine function), and is 1-Lipschitz as:
HIX oy = 1Y Mlop | S NX = Ylop < [ X = Y[p.
Thus by Theorems 2 and 3, || X||lop — E[|| X ||op] is O(1) sub-Gaussian.

5.3 Any Singular Value for a Gaussian Matrix

We now extend our approach to look at other singular values (o1 (X) where k > 2). Note that in this case,
or(X) is no longer convex, so we restrict our analysis to the Gaussian case as it doesn’t require convexity.
However, o (X) is still 1-Lipschitz as we can see by using Weyl’s Inequality:

|01(X) = o (V)] < [X = Ylop < [|X = Y|p.
Thus by Theorem 3 01(X) — E [0 (X)] is O(1) sub-Gaussian.

5.4 Rademacher Complexity
Definition 2. Let A C R". The Rademacher complexity of A is

n
sup E a;€;

a€cA i—1

R.(A)=E

)

where €; € {—1,41} are i.i.d. Rademacher random variables. Similarly, let

Rn(A) = sup ai€;.
aEA;

Note that R, (A) is a convex function of € with Lipschitz constant W (A) as:

| sup(a, €) — sup(a, €')| < |sup(a,e —€)| < sup [[all2]le — €'[lo = W(A)[[e — €]
acA acA a€A acA

Thus by theorem 2, we get:

Pr [|Ra(A) = Ra(A4)] 2 1] < 2exp (swv(ip) .



6 Closing Remarks

Some final closing remarks on these concentration inequalities:
Remark

e You can apply Theorems 1, 2, and 3 to unbounded RVs by a truncation trick.
e Theorems 2 and 3 imply Hoeffding (as ), X; is convex and \/n-Lipschitz).

e There are “Bernstein” versions of these inequalities that account for variance.

This type of inequalities are also often used to bound the supremum of empirical processes:

1 n
flz) = slelg n ;9(%‘)-

1=
In particular, we have the functional Hoeffding theorem:

Theorem 5 (Functional Hoeffding Theorem). If X; € X; are independent, and for each g € G:
9(x;) € [aig bigl,  Va; € X
Then:
nt?
Prif(e) ~Bf(@)] > 1) < exp (g ).
where L? = SUP e % S (big — aig)?.

Note that if we used the bounded difference inequality we need L? = L 377" sup,(bi,g — a;,4)?, which
is often much weaker than the functional Hoeffding bound.



