
ORIE 7790 High Dimensional Probability and Statistics Lecture 5–6 - 02/04-06/2020

Lectures 5–6: Concentration for Lipschitz Functions
Lecturer: Yudong Chen Scribe: Sean Sinclair, Connor Lawless

Reading:

• M. J. Wainwright, “High-dimensional statistics: A non-asymptotic viewpoint”, Section 3.1.

• J. Duchi, “Lecture notes for Statistics 311/Electrical Engineering 377: Information Theory and Statiscs”,
Section 3.3.

• R. Vershynin, “High dimensional Probability”, Section 5.

1 Brief Review

Last class we discussed concentration inequalities for the case when X = (X1, . . . , Xn) is a random vector
with independent coordinates. We showed concentration results for the two cases when:

f(X1, . . . , Xn) =
1

n

n∑
i=1

(
Xi − E[Xi]

)
,

f(X1, . . . , Xn) = ‖X1, . . . , Xn‖2 .

2 This Week’s Goal

The main goal of today’s class will be to extend the result to functions which are L-Lipschitz and separately
convex.1 In particular, we will be interested in showing the following:

Theorem 1. Let X1, . . . , Xn be independent random variables each supported on [a, b]. Further let f : Rn →
R be separately convex and L-Lipschitz. Then for all t ≥ 0

Pr [f(X1, . . . , Xn)− E [f(X1, . . . , Xn)] ≥ t] ≤ exp

(
− t2

4L2(b− a)2

)
.

We start by considering a few remarks of the theorem.
Remark

• A function f : Rn → R is said to be separately convex when the function xk → f(x1, . . . , xk, . . . , xn)
is convex for fixed (xj : j 6= k).

• If f is convex then f is also separately convex.

• f is L-Lipschitz when |f(x)− f(y)| ≤ L ‖x− y‖2 for any x, y ∈ Rn.

• Theorem 1 is considered dimension-free: the concentration holds for a quantity independent of n.

For the proof we will use the Entropy Method. We need to show that for X = (X1, . . . , Xn) that the
(upper tail of) random variable f(X) is sub-Gaussian with parameter σ2 = 2L2(b− a)2. Afterwards we can
use the standard sub-Gaussian tail bound to obtain the result. To show that f(X) is sub-Gaussian we will
bound the moment generating function E

[
eλf(X)

]
. The proof will follow in two main steps:

1Reading: Sec 3.1 of Wainwright book. Also relevant: Duchi notes Sec 3.3 and Vershynin HDP book Sec 5.
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Step 1: Show the result for n = 1. This will be done with a Herbst argument, relating the MGF of a
random variable to its entropy.

Step 2: Tensorize the result for general n.

3 Entropy

Before starting the proof we begin with some notation and preliminary lemmas. We will start by showing
the case when n = 1.

Definition 1. For a convex function φ : R→ R, the φ-entropy of Z is

Hφ(Z) = E [φ(Z)]− φ(E [Z]).

Remark

• By Jensen’s inequality and the convexity of φ, we always have that Hφ(Z) ≥ 0.

• Specializing φ(u) = u2 you obtain that Hφ(Z) = Var [Z].

• Taking φ(u) = − log(u) then a straightforward calculation shows that Hφ(eλX) = log(MX(λ)) where
MX(λ) := E

[
eλX

]
is the moment generating function. Thus, Hφ(eλX) recovers the log moment

generating function.

We will fix φ(u) = u log(u) for the rest of the lecture and omit the subscript φ in the bottom of Hφ.
After applying it to eλX we have that

H(eλX) = E
[
eλX log(eλX)

]
− E

[
eλX

]
log
(
E
[
eλX

])
= E

[
λXeλX

]
− E

[
eλX

]
log
(
E
[
eλX

])
= λM ′X(λ)−MX(λ) log(MX(λ)).

Notice that if we take X ∼ N(0, σ2) then after plugging in the moment generating function we get that

H(eλX) =
1

2
λ2σ2MX(λ).

Lemma 1 (Herbst Argument). If H(eλX) ≤ 1
2λ

2σ2MX(λ) for all λ ≥ 0 then E
[
eλ(X−E[X])

]
≤ e

1
2λ

2σ2

for
all λ ≥ 0. In particular, X satisfies the sub-Gaussian MGF bound for λ ≥ 0.

Proof From before we have by assumption that

H(eλX) = λM ′X(λ)−MX(λ) log(MX(λ))

≤ 1

2
λ2σ2MX(λ).

Now define G(λ) = 1
λ log(MX(λ)). Moreover, limλ→0G(λ) = E [X] by the derivatives of the MGF yielding

the moments. We thus extension to G(0) = E [X] . Then by an application of the chain rule

G′(λ) =
1

λ

M ′X(λ)

MX(λ)
− log(MX(λ))

λ2
.

Rewriting the original inequality in terms of G gives that G′(λ) ≤ 1
2σ

2. This differential equation has a
known solution that

G(λ)−G(0) ≤ 1

2
σ2λ.
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Thus we find that

1

λ
log(MX(λ))− E [X] ≤ 1

2
σ2λ

⇒ log(MX(λ))− λE [X] ≤ 1

2
σ2λ2

⇒ E
[
eλ(X−E[X])

]
≤ 1

2
σ2λ2

as needed.

We next show the following result, which relates the entropy of g(X) to its derivative and MGF.

Lemma 2. If X is supported on [a, b] and g is a convex function then

H(eλg(X)) ≤ 1

2
λ2(b− a)2E

[
g′(X)2eλg(X)

]
.

Proof We use a symmetrization argument. Let Y be an independent copy of X. Then

H(eλg(X)) = E
[
λg(X)eλg(X)

]
− E

[
eλg(X)

]
log
(
E
[
eλg(X)

])
= E

[
λg(X)eλg(X)

]
− E

[
eλg(X)

]
log
(
E
[
eλg(Y )

])
≤ E

[
λg(X)eλg(X)

]
− E

[
eλg(X)λg(Y )

]
by Jensen’s inequality and independence of X and Y

= E
[
λg(X)eλg(X) − eλg(X)λg(Y )

]
=

1

2
E
[
(λg(X)− λg(Y ))(eλg(X) − eλg(Y ))

]
= E

[
(λg(X)− λg(Y ))(eλg(X) − eλg(Y ))1[g(X)≥g(Y )]

]
.

The second to last line comes from the fact that X and Y are independent. The last line is from noticing
that the terms on the inside are non-negative and symmetric, and so we can decompose the expectation into
the two equal-sized portions from when g(X) ≥ g(Y ) and other way around.

However, a simple fact shows that es − et ≤ es(s− t). Rearranging this inequality shows that

(s− t)(es − et)1[s≥t] ≤ es(s− t)21[s≥t].

We apply the above inequality where s = λg(X) and t = λg(Y ) to get that

H(eλg(X)) ≤ E
[
λ2(g(X)− g(Y ))2eλg(X)1[g(X)≥g(Y )]

]
= λ2E

[
(g(X)− g(Y ))2eλg(X)1[g(X)≥g(Y )]

]
≤ λ2E

[
g′(X)2(X − Y )2eλg(X)1[g(X)≥g(Y )]

]
≤ 1

2
λ2(b− a)2E

[
g′(X)2eλg(X)

]
.

In the second to last line we used the definition of the derivative of a convex function, and the last line that
X and Y are supported in [a, b] and a symmetrization argument again.

Using these facts we are now ready to show Theorem 1 for the case when n = 1.
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Proof As stated earlier, it suffices to show that f(X) = f(X1) is sub-Gaussian with parameter σ2 =
2L2(b− a)2. However, by Lemma 2 since f is convex we know that

H(eλf(X)) ≤ 1

2
λ2(b− a)2E

[
f ′(X)2eλf(X)

]
.

As f is L-Lipschitz we know maxx |f ′(x)| ≤ L and so this can be bounded by 1
2λ

2L2(b−a)2E
[
eλf(X)

]
. Thus

we find that H(eλf(X)) ≤ 1
2λ

2L2(b − a)2MX(λ). By Lemma 1 this shows that f(x) is sub-Gaussian with
parameter σ2 = 2L2(b− a)2.

4 Tensorization

We now start to show the more general case by a tensorization argument. We start with some notation. For
a vector x ∈ Rn set x−k = (xi | i 6= k) ∈ Rn−1. For fixed x−k define fk : R→ R by

fk(xk) = f(xk, x−k).

We define the conditional entropy for a random variable Xk as

H(eλfk(Xk) | x−k) = H(eλf(Xk,x−k)).

Notice here that the only randomness is Xk as x−k is fixed.

Lemma 3 (Tensorization of Entropy). If X = (X1, . . . , Xn) has independent coordinates then

H(eλf(X)) ≤
n∑
k=1

E
[
H(eλfk(Xk) | X−k)

]
.

Before proving the Lemma, we will need the following claim,

Claim 1 (Variational Representation of Entropy).

H(eλf(X)) = sup
g

{
E
[
g(X)eλf(X)

]
| E
[
eg(X)

]
≤ 1
}
.

Proof We first show that the left hand side is upper bounded by the right hand side. Consider the function
g(x) = λf(x)− log

(
E
[
eλf(X)

])
. Then

H(eλf(X)) = E
[
λf(X)eλf(X)

]
− E

[
eλf(X)

]
log
(
E
[
eλf(X)

])
= E

[
g(X)eλf(X)

]
.

Noticing that E
[
eg(X)

]
= 1 the first inequality follows.

For the other direction consider the function Θ(u) = u log(u) − u. Then using the fact that ey is the
Fenchel-conjugate of Θ we have that

Θ(u) = sup
y
{uy − ey}.
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However,

H(eλf(X)) = E
[
Θ(eλf(X))

]
−Θ

(
E
[
eλf(X)

])
= E

[
sup
y
yeλf(X) − ey

]
−Θ

(
E
[
eλf(X)

])
= sup

g̃
E
[
g̃(X)eλf(X) − eg̃(X)

]
− E

[
eλf(X)

]
log
(
E
[
eλf(X)

])
+ E

[
eλf(X)

]
= sup

g̃
E
[
(g̃(X)− log

(
E
[
eλf(X)

])
eλf(X)

]
− E

[
eg̃(X)

]
+ E

[
eλf(X)

]
= sup

g
E
[
g(X)eλf(X)

]
+ E

[
eλf(X)

]
(1− E

[
eλg(X)

]
)

≥ sup
g

{
E
[
g(X)eλf(X)

]
| E
[
eg(X)

]
≤ 1
}
,

where in the second to last line we defined g(x) = g̃(x)− log
(
E
[
eλf(X)

])
.

We now complete the proof for Lemma 3.
Proof Let g be any function satisfying E

[
eg(X)

]
≤ 1. We also define Xn

j , and gk(Xn
k ) as follows:

Xn
j = (Xj , Xj+1, ..., Xn), j = 1, . . . , n

gk(Xn
k ) = log

E
[
eg(X)|Xn

k

]
E
[
eg(X)|Xn

k+1

] , k = 1, . . . , n.

Note that by construction, we get:

n∑
k=1

gk(Xn
k ) = g(X)− logE

[
eg(X)

]
≥ g(X). (1)

We also have:

E
[
eg

k(Xn
k )|X−k

]
= E

[
E
[
eg(X)|Xn

k

]
E
[
eg(X)|Xn

k+1

] |X−k] =
E
[
eg(X)|Xn

k+1

]
E
[
eg(X)|Xn

k+1

] = 1, (2)

where we used the fact that by independence E [E [·|Xn
k ] |X−k] = E

[
·|Xn

k+1

]
= E

[
E
[
·|Xn

k+1

]
|X−k

]
Combin-

ing this together we find that

E
[
g(X)eλf(x)

]
≤

n∑
k=1

E
[
gk(Xn

k e
λf(X)

]
by (1)

=

n∑
k=1

E
[
E
[
gk(Xn

k e
λf(X)|X−k

]]
≤

n∑
k=1

E
[
H(eλf(X)|X−k)

]
. by (1) and Claim 1

Taking the supremum over g we conclude the proof:

H(eλf(X)) ≤
n∑
k=1

E
[
H(eλf(X)|X−k)

]
.
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We can now finish our proof of Theorem 1.
Proof By Lemma 2:

H(eλf(X)|X−k) ≤ λ2(b− a)2E
[
f ′k(Xk)2eλfk(Xk) | X−k

]
.

By Lemma 3:

H(eλf(X)) ≤ λ2(b− a)2E

[
n∑
k=1

f ′k(Xk)2eλf(X)

]
= λ2(b− a)2E

[
‖∇f(X)‖22eλf(X)

]
≤ λ2(b− a)2L2E

[
eλf(X)

]
.

Combining this result with Lemma 1 we conclude that f(X) satisfies the 2L2(b − a)2 sub-Gaussian upper
tail bound as needed.

While we used that f is separately convex to prove Theorem 1, if we impose the stronger assumption of
convexity we can obtain the following two-sided inequality (note that this stronger assumption is required
for a two-sided bound):

Theorem 2. Let X1, . . . , Xn be independent random variables each supported on [a, b]. Further let f : Rn →
R be convex and L-Lipschitz. Then ∀t ≥ 0

Pr [|f(X1, . . . , Xn)− E [f(X1, . . . , Xn)] | ≥ t] ≤ 2 exp

(
− t2

2L2(b− a)2

)
.

Note that the convexity assumption cannot be dropped in general; see Ledoux and Talagrand 1991, pp17.
Furthermore, if Xi are distributed normally, we no longer need the convexity assumption resulting in the

following theorem:

Theorem 3. Let X1, . . . , Xn be independent random variables each distributed N (0, 1). Further let f : Rn →
R be L-Lipschitz. Then ∀t ≥ 0

Pr [|f(X1, . . . , Xn)− E [f(X1, . . . , Xn)] | ≥ t] ≤ 2 exp

(
− t2

2L2

)
.

We can compare these results to the bounded difference (aka McDiarmid’s) inequality.

Theorem 4 (Bounded Difference Inequality). Let X1, . . . , Xn be independent random variables. Further let
f : Rn → R satisfy the bounded difference property:

|f(xk, x−k)− f(x′k, x−k)| ≤ Lk for all k, xk, x
′
k, x−k.

Then for all t ≥ 0,

Pr [|f(X1, . . . , Xn)− E [f(X1, . . . , Xn)] | ≥ t] ≤ 2 exp

(
− 2t2∑n

k=1 L
2
k

)
.

In many problems
∑n
k=1 L

2
k � L2, and thus Theorem 4 is much weaker than Theorems 1, 2, and 3.

5 Applications

We now turn our attention to some applications of these inequalities.
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5.1 Concentration of Norm

Our first application is the concentration of norms of random vectors, which we have looked at in last lecture.
Start by noting that norms are convex, and 1-Lipschitz by the triangle inequality:

| ‖X‖2 − ‖Y ‖2 | ≤ ‖X − Y ‖2 .

Thus if the Xi’s are bounded or Gaussian, by Theorem 2 or 3 we have ‖X‖2 − E [‖X‖2] is O(1) sub-
Gaussian. If the Xi’s are bounded, the norm also satisfies the bounded difference property:

| ‖x1, . . . , xk, . . . , xn‖2 − ‖x1, . . . , x
′
k, . . . , xn‖2 | ≤ |xk − x

′
k| = O(1).

Thus by using the bounded difference inequality, we get that the norm is O(n) sub-Gaussian — a much
weaker result.

5.2 Max Singular Value

Next let’s consider a random matrix X ∈ Rn×n, where Xi,j is independently distributed and either bounded
or Gaussian. We define the operator norm (the largest singular value) as follows:

‖X‖op = σ1(X) = sup
‖u‖2≤1,‖v‖2≤1

uTXv.

Note that the operator norm is convex (maximum of affine function), and is 1-Lipschitz as:

| ‖X‖op − ‖Y ‖op | ≤ ‖X − Y ‖op ≤ ‖X − Y ‖F .

Thus by Theorems 2 and 3, ‖X‖op − E [‖X‖op] is O(1) sub-Gaussian.

5.3 Any Singular Value for a Gaussian Matrix

We now extend our approach to look at other singular values (σk(X) where k ≥ 2). Note that in this case,
σk(X) is no longer convex, so we restrict our analysis to the Gaussian case as it doesn’t require convexity.
However, σk(X) is still 1-Lipschitz as we can see by using Weyl’s Inequality:

|σk(X)− σk(Y )| ≤ ‖X − Y ‖op ≤ ‖X − Y ‖F .

Thus by Theorem 3 σk(X)− E [σk(X)] is O(1) sub-Gaussian.

5.4 Rademacher Complexity

Definition 2. Let A ⊂ Rn. The Rademacher complexity of A is

Rn(A) = E

[
sup
a∈A

n∑
i=1

aiεi

]
,

where εi ∈ {−1,+1} are i.i.d. Rademacher random variables. Similarly, let

R̂n(A) = sup
a∈A

n∑
i=1

aiεi.

Note that R̂n(A) is a convex function of ε with Lipschitz constant W (A) as:

| sup
a∈A
〈a, ε〉 − sup

a∈A
〈a, ε′〉| ≤ | sup

a∈A
〈a, ε− ε′〉| ≤ sup

a∈A
‖a‖2‖ε− ε′‖2 = W (A)‖ε− ε′‖2.

Thus by theorem 2, we get:

Pr
[
|R̂n(A)−Rn(A)| ≥ t

]
≤ 2 exp

(
−t2

8W (A)2

)
.
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6 Closing Remarks

Some final closing remarks on these concentration inequalities:
Remark

• You can apply Theorems 1, 2, and 3 to unbounded RVs by a truncation trick.

• Theorems 2 and 3 imply Hoeffding (as
∑
iXi is convex and

√
n-Lipschitz).

• There are “Bernstein” versions of these inequalities that account for variance.

This type of inequalities are also often used to bound the supremum of empirical processes:

f(x) = sup
g∈G

1

n

n∑
i=1

g(xi).

In particular, we have the functional Hoeffding theorem:

Theorem 5 (Functional Hoeffding Theorem). If Xi ∈ Xi are independent, and for each g ∈ G:

g(xi) ∈ [ai,g, bi,g], ∀xi ∈ Xi.

Then:

Pr [f(x)− E [f(x)] ≥ t] ≤ exp

(
− nt

2

4L2

)
,

where L2 = supg∈G
1
n

∑n
i=1(bi,g − ai,g)2.

Note that if we used the bounded difference inequality we need L2 = 1
n

∑n
i=1 supg∈G(bi,g − ai,g)2, which

is often much weaker than the functional Hoeffding bound.
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