ORIE 7790 High Dimensional Probability and Statistics
 Lecture 7: Random Matrices I
 Lecturer: Yudong Chen
 Scribe: Xumei Xi

References:

- M. J. Wainwright, High-dimensional statistics: A non-asymptotic viewpoint, Sections 5.4, 6.2.
- R. Vershynin, High dimensional Probability, Sections 7.2, 7.3.

1 Motivation

Consider the following matrix estimation problem. Let $Y^{*} \in \mathbb{R}^{n \times n}$ be an unknown low-rank matrix. Y is a noisy version of Y^{*}, with $\mathbb{E}[Y]=Y^{*}$. Our task is to produce an estimator \hat{Y} by leveraging the low-rank structure of Y^{*}. To study the estimation error, we often need to control the quantity $\left\|Y-Y^{*}\right\|_{\mathrm{op}}$. The question reduces to upper bounding $\|X\|_{\text {op }}$, where X is a random matrix with zero-mean.

We are going to introduce 3 approaches to bounding

$$
\|X\|_{\mathrm{op}}=\sup _{u, v \in \mathbb{S}^{n-1}} u^{T} X v
$$

1. From previous lectures, we know $\|X\|_{\text {op }}$ tends to concentrate around its mean $\mathbb{E}\left[\|X\|_{\mathrm{op}}\right]$, because the operator norm is convex and 1-Lipschitz continuous. Then the next step is to bound the expectation of the supremum of an empirical process

$$
\mathbb{E}\left[\|X\|_{\mathrm{op}}\right]=\mathbb{E}\left[\sup _{u, v \in \mathbb{S}^{n-1}} u^{T} X v\right] .
$$

This can be achieved by Gaussian comparison inequalities.
2. Using the ε-net argument, we can bound the supremum by discretizing on \mathbb{S}^{n-1} and then invoking union bound.
3. If we write X as the sum of independent matrices, $X=\sum_{i=1}^{m} X^{(i)}$, there are matrix versions of concentration inequalities (Chernoff, Hoeffding, Berstein) that can help bound $\left\|\sum_{i=1}^{m} X^{(i)}\right\|_{\mathrm{op}}$.

2 Gaussian Comparison Inequalities

Theorem 1 (Slepian's Inequality). Let $Z, Y \in \mathbb{R}^{N}$ be zero-mean Gaussian random vectors such that

$$
\begin{align*}
\mathbb{E}\left[Z_{i}^{2}\right] & =\mathbb{E}\left[Y_{i}^{2}\right], \forall i \tag{1}\\
\mathbb{E}\left[Z_{i} Z_{j}\right] & \geq \mathbb{E}\left[Y_{i} Y_{j}\right], \forall i, j . \tag{2}
\end{align*}
$$

Then we are guaranteed

$$
\begin{equation*}
\mathbb{E}\left[\max _{i} Z_{i}\right] \leq \mathbb{E}\left[\max _{i} Y_{i}\right] . \tag{3}
\end{equation*}
$$

Remark The theorem is basically saying that for zero-mean Gaussian processes, under the condition that variances are equal, high correlations reduce the expectation of maximum. Think of the extreme case where $Z_{1}=Z_{2}=\cdots=Z_{N}$. Then it is clear that the behavior of $\left\{Z_{i}\right\}$ is more controlled than $\left\{Y_{i}\right\}$, due to much higher correlations.

Proof For $\beta>0$, we introduce $F_{\beta}(x)=\frac{1}{\beta} \log \sum_{i=1}^{N} e^{\beta x_{i}}$, which is commonly called the softmax function. Observe that

$$
\max _{i} x_{i} \leq F_{\beta}(x) \leq \max _{i} x_{i}+\frac{\log N}{\beta}, \forall \beta>0
$$

Additionally, F_{β} is differentiable and $F_{\beta}(x) \rightarrow \max _{i} x_{i}$ as $\beta \rightarrow+\infty$. So we can use the bound on F_{β} to control the maximum. Hence F_{β} really is, by its name, a "soft" version of the maximum.

We assume without loss of generality that Z, Y are independent. Define the Gaussian interpolation

$$
X(t)=\sqrt{1-t} Z+\sqrt{t} Y, \quad \forall t \in[0,1]
$$

and consider the function $\phi(t)=\mathbb{E}\left[F_{\beta}(X(t))\right], \forall t \in[0,1]$. If we can show $\phi^{\prime}(t) \geq 0, \forall t \in(0,1)$, then we can conclude that $\mathbb{E}\left[F_{\beta}(Y)\right]=\phi(1) \geq \phi(0)=\mathbb{E}\left[F_{\beta}(Z)\right]$.

In order to do that, we first use the chain rule to write down the first derivative

$$
\phi^{\prime}(t)=\sum_{j=1}^{N} \mathbb{E}\left[\frac{\partial F_{\beta}}{\partial x_{j}}(X(t)) X_{j}^{\prime}(t)\right]
$$

Note that

$$
\begin{aligned}
\mathbb{E}\left[X_{i}(t) X_{j}^{\prime}(t)\right] & =\mathbb{E}\left[\left(\sqrt{1-t} Z_{i}+\sqrt{t} Y_{i}\right)\left(-\frac{1}{2 \sqrt{1-t}} Z_{j}+\frac{1}{2 \sqrt{t}} Y_{j}\right)\right] \\
& =\frac{1}{2}\left(\mathbb{E}\left[Y_{i} Y_{j}\right]-\mathbb{E}\left[Z_{i} Z_{j}\right]\right), \quad \text { by independence and zero-meanness } \\
& \begin{cases}\leq 0, & \forall i, j \\
=0, & i=j, \quad \text { by assumption }(2)\end{cases}
\end{aligned}
$$

So we can write

$$
X_{i}(t)=\alpha_{i j} X_{j}^{\prime}(t)+W_{i j}
$$

where $W_{i j}$'s are Gaussian, $W_{j}:=\left(W_{1 j}, \ldots, W_{N j}\right)$ is independent of $X_{j}^{\prime}(t)$, and $\alpha_{i j} \leq 0, \alpha_{i i}=0$. ${ }^{1}$
Since F_{β} is twice differentiable, we may perform Taylor expansion

$$
\frac{\partial F_{\beta}}{\partial x_{j}}(X(t))=\frac{\partial F_{\beta}}{\partial x_{j}}\left(W_{j}\right)+\sum_{i=1}^{N} \frac{\partial^{2} F_{\beta}}{\partial x_{j} \partial x_{i}}(U) \alpha_{i j} X_{j}^{\prime}(t)
$$

where $U \in \mathbb{R}^{N}$ is between $X(t)$ and W_{j}. Taking expectations gives us

$$
\begin{aligned}
\mathbb{E}\left[\frac{\partial F_{\beta}}{\partial x_{j}}(X(t)) X_{j}^{\prime}(t)\right] & =\mathbb{E}\left[\frac{\partial F_{\beta}}{\partial x_{j}}\left(W_{j}\right) X_{j}^{\prime}(t)\right]+\sum_{i=1}^{N} \mathbb{E}\left[\frac{\partial^{2} F_{\beta}}{\partial x_{j} \partial x_{i}}(U) \alpha_{i j} X_{j}^{\prime}(t)^{2}\right] \\
& =\sum_{i=1}^{N} \mathbb{E}\left[\frac{\partial^{2} F_{\beta}}{\partial x_{j} \partial x_{i}}(U) \alpha_{i j} X_{j}^{\prime}(t)^{2}\right] \quad \text { because } W_{j} \perp X_{t}^{\prime}(t) \text { and } \mathbb{E}\left[X_{j}^{\prime}(t)\right]=0 \\
& \geq 0
\end{aligned}
$$

where the last inequality holds because the soft-max function satisfies $\frac{\partial^{2} F_{\beta}}{\partial x_{j} \partial x_{i}}(x) \leq 0, \forall x, \forall i \neq j$. Thus we have $\phi^{\prime}(t) \geq 0, \forall t \in(0,1)$, which yields $\mathbb{E}\left[F_{\beta}(Z)\right] \leq \mathbb{E}\left[F_{\beta}(Y)\right]$. Taking $\beta \rightarrow+\infty$, we get

$$
\mathbb{E}\left[\max _{i} Z_{i}\right] \leq \mathbb{E}\left[\max _{i} Y_{i}\right]
$$

which completes the proof.

[^0]Finally, there are some additional points worth mentioning.

- Note that our proof heavily relies on Gaussianity.
- Slepian's inequality holds for any N. In fact, it holds for comparing the expectation of the supremum over infinite sets.
- There is a stronger version called the Sudakov-Fernique theorem.

Theorem 2 (Sudakov-Fernique). Let $Z, Y \in \mathbb{R}^{N}$ be zero-mean Gaussian random vectors. Suppose

$$
\begin{equation*}
\mathbb{E}\left[\left(Z_{i}-Z_{j}\right)^{2}\right] \leq \mathbb{E}\left[\left(Y_{i}-Y_{j}\right)^{2}\right], \forall i, j \tag{4}
\end{equation*}
$$

Then $\mathbb{E}\left[\max _{i} Z_{i}\right] \leq \mathbb{E}\left[\max _{i} Y_{i}\right]$.
It's easy to see that Slepian's inequality is just a corollary of the Sudakov-Fernique theorem.

3 Applications of Gaussian Comparison Inequalities

Next we return to the problem stated in the beginning.

3.1 Gaussian Matrices

First, we use the Slepian's inequality to bound $\|X\|_{\text {op }}$. We assume $X \in \mathbb{R}^{n \times n}$, whose entries $X_{i j}$'s are i.i.d. standard normal. We next compare 2 Gaussian processes indexed by (u, v) with $u, v \in \mathbb{S}^{n-1}$,

$$
\begin{aligned}
& Z_{u v}:=u^{T} X v+\varepsilon=\left\langle X, u v^{T}\right\rangle+\varepsilon \quad \text { where } \varepsilon \sim N(0,1) \text { and } \varepsilon \text { is independent of } X \\
& Y_{u v}:=g^{T} u+h^{T} v \quad \text { where } g, h \sim N\left(0, I_{n}\right) \text { and they are independent. }
\end{aligned}
$$

It is easy to see that for all $u, v \in \mathbb{S}^{n-1}$

$$
\begin{aligned}
\mathbb{E}\left[Z_{u v}^{2}\right] & =\|u\|_{2}^{2}\|v\|_{2}^{2}+1=2 \\
\mathbb{E}\left[Y_{u v}^{2}\right] & =\|u\|_{2}^{2}+\|v\|_{2}^{2}=2
\end{aligned}
$$

Furthermore, for any $u, v, \tilde{u}, \tilde{v} \in \mathbb{S}^{n-1}$, we have

$$
\begin{aligned}
\mathbb{E}\left[\left(Z_{u v}-Z_{\tilde{u}, \tilde{v}}\right)^{2}\right] & =\mathbb{E}\left[\left\langle X, u v^{T}-\tilde{u} \tilde{v}^{T}\right\rangle^{2}\right] \\
& =\left\|u v^{T}-\tilde{u} \tilde{v}^{T}\right\|_{F}^{2} \\
& =\|\tilde{v}\|_{2}^{2}\|u-\tilde{u}\|_{2}^{2}+\|u\|_{2}^{2}\|v-\tilde{v}\|_{2}^{2}+2\left(\|u\|_{2}^{2}-\langle u, \tilde{u}\rangle\right)\left(\langle v, \tilde{v}\rangle-\|\tilde{v}\|_{2}^{2}\right) \\
& \leq\|u-\tilde{u}\|_{2}^{2}+\|v-\tilde{v}\|_{2}^{2}
\end{aligned}
$$

where the last line can be justified by Cauchy-Schwarz inequality. For the other process, we have

$$
\begin{aligned}
\mathbb{E}\left[\left(Y_{u v}-Y_{\tilde{u}, \tilde{v}}\right)^{2}\right] & =\mathbb{E}\left[\left(g^{T}(u-\tilde{u})+h^{T}(v-\tilde{v})\right)^{2}\right] \\
& =\|u-\tilde{u}\|_{2}^{2}+\|v-\tilde{v}\|_{2}^{2}
\end{aligned}
$$

Consequently, $\mathbb{E}\left[\left(Z_{u v}-Z_{\tilde{u}, \tilde{v}}\right)^{2}\right] \leq \mathbb{E}\left[\left(Y_{u v}-Y_{\tilde{u}, \tilde{v}}\right)^{2}\right]$. Hence

$$
\begin{aligned}
\mathbb{E}\left[Z_{u v} Z_{\tilde{u} \tilde{v}}\right] & =\frac{1}{2}\left(\mathbb{E}\left[Z_{u v}^{2}\right]+\mathbb{E}\left[Z_{\tilde{u} \tilde{v}}^{2}\right]-\mathbb{E}\left[\left(Z_{u v}-Z_{\tilde{u} \tilde{v}}\right)^{2}\right]\right) \\
& \geq \frac{1}{2}\left(\mathbb{E}\left[Y_{u v}^{2}\right]+\mathbb{E}\left[Y_{\tilde{u} \tilde{v}}^{2}\right]-\mathbb{E}\left[\left(Y_{u v}-Z_{\tilde{u} \tilde{v}}\right)^{2}\right]\right) \quad \text { by what we've proved } \\
& =\mathbb{E}\left[Y_{u v} Y_{\tilde{u} \tilde{v}}\right] .
\end{aligned}
$$

Now that we've established the assumptions (1), (2) in Slepain's inequality, we can derive the bound

$$
\begin{aligned}
\mathbb{E}\left[\sup _{u, v \in \mathbb{S}^{n-1}} u^{T} X v\right] & =\mathbb{E}\left[\sup _{u, v \in \mathbb{S}^{n-1}} u^{T} X v+\varepsilon\right] \\
& \leq \mathbb{E}\left[\sup _{u, v \in \mathbb{S}^{n-1}} g^{T} u+h^{T} v\right] \quad \text { by Slepian's inequality } \\
& =\mathbb{E}\left[\|g\|_{2}+\|h\|_{2}\right] \\
& \leq \sqrt{\mathbb{E}\left[\|g\|_{2}^{2}\right]}+\sqrt{\mathbb{E}\left[\|h\|_{2}^{2}\right]} \quad \text { by Jensen's inequality used on concave function } \sqrt{ } \text {. } \\
& =2 \sqrt{n} .
\end{aligned}
$$

Note that in $\mathbb{E}\left[\|X\|_{\mathrm{op}}\right] \leq 2 \sqrt{n}$, the constant 2 is tight. It demonstrates Gaussian matrices like X are very well-behaved.

Recall from last lecture, we know

$$
\mathbb{P}\left[\left|\|X\|_{\mathrm{op}}-\mathbb{E}\left[\|X\|_{\mathrm{op}}\right]\right| \geq t\right] \leq e^{-t^{2} / 4}
$$

Combing this concentration result with our bound on $\mathbb{E}\left[\|X\|_{\mathrm{op}}\right]$, we eventually arrive at

$$
\begin{equation*}
\|X\|_{\mathrm{op}} \leq(2+\varepsilon) \sqrt{n}, \quad \text { with probability } \geq 1-e^{-\varepsilon^{2} n / 4} \tag{5}
\end{equation*}
$$

Remark If $X \in R^{n \times m}$, we have $\mathbb{E}\left[\|X\|_{\mathrm{op}}\right] \leq \sqrt{n}+\sqrt{m}$. The proof is similar. For Gaussian matrices with heterogeneous variances, refer to this paper: Ramon van Handel, On the spectral norm of Gaussian random matrices. ${ }^{2}$

3.2 Matrix Estimation

Recall our ground truth matrix $Y^{*} \in \mathbb{R}^{n \times n}$ with $\operatorname{rank}\left(Y^{*}\right) \leq r$. We observe a $Y=Y^{*}+E$, where the entries of E are i.i.d. $N(0,1)$. Then we can define our estimator, which is the best rank- r approximation of Y,

$$
\hat{Y}=\underset{Z: \operatorname{rank}(Z) \leq r}{\arg \min }\|Y-Z\|_{\mathrm{op}}
$$

We first bound the estimation error in spectral norm:

$$
\begin{aligned}
\left\|\hat{Y}-Y^{*}\right\|_{\mathrm{op}} & \leq\|\hat{Y}-Y\|_{\mathrm{op}}+\left\|Y^{*}-Y\right\|_{\mathrm{op}} \\
& \leq 2\left\|Y^{*}-Y\right\|_{\mathrm{op}} \quad \text { by optimality of } \hat{Y} \\
& =2\|E\|_{\mathrm{op}} \\
& \leq 6 \sqrt{n}, \quad \text { with probability } \geq 1-e^{-n / 4}
\end{aligned}
$$

where the last inequality follows from plugging in $\varepsilon=1$ in (5). Thus

$$
\begin{aligned}
\frac{1}{n^{2}}\left\|\hat{Y}-Y^{*}\right\|_{F}^{2} & \leq \frac{1}{n^{2}} 2 r\left\|\hat{Y}-Y^{*}\right\|_{\text {op }}^{2} \quad \text { because } \operatorname{rank}\left(\hat{Y}-Y^{*}\right) \leq 2 r \\
& \lesssim \frac{r}{n}
\end{aligned}
$$

We see that r is considerably less than n, the estimation error is quite small.

[^1]
[^0]: ${ }^{1} X_{i}(t)$ can be seen as generated in this way because Gaussian distribution is determined by its mean and covariance.

[^1]: ${ }^{2}$ https://www.ams.org/journals/tran/2017-369-11/S0002-9947-2017-06922-1/

