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1 Motivation

Consider the following matrix estimation problem. Let Y* € R™*™ be an unknown low-rank matrix. Y is
a noisy version of Y*, with E[Y] = Y*. Our task is to produce an estimator Y by leveraging the low-rank
structure of Y*. To study the estimation error, we often need to control the quantity [|Y —Y™[| . The
question reduces to upper bounding [ X||,,, where X is a random matrix with zero-mean.

We are going to introduce 3 approaches to bounding

[ Xl = sup u” Xw.

u,peSn—1

1. From previous lectures, we know || X||, tends to concentrate around its mean E [HX ||Op} , because the

operator norm is convex and 1-Lipschitz continuous. Then the next step is to bound the expectation
of the supremum of an empirical process

E {||X||Op} =E| sup ulXv|.
u’vegn—l
This can be achieved by Gaussian comparison inequalities.

2. Using the e-net argument, we can bound the supremum by discretizing on S~ ! and then invoking
union bound.

3. If we write X as the sum of independent matrices, X = > 1" | X (1), there are matrix versions of
concentration inequalities (Chernoff, Hoeffding, Berstein) that can help bound ||Z?i1 X ||Op.

2 Gaussian Comparison Inequalities

Theorem 1 (Slepian’s Inequality). Let Z,Y € RY be zero-mean Gaussian random vectors such that

E[2?] =E[Y?] Vi (1)
Then we are guaranteed
E [max ZZ} <E [maxYl} . (3)

Remark The theorem is basically saying that for zero-mean Gaussian processes, under the condition that
variances are equal, high correlations reduce the expectation of maximum. Think of the extreme case where
Zy =25 =---=Zn. Then it is clear that the behavior of {Z;} is more controlled than {Y;}, due to much
higher correlations.



Proof For > 0, we introduce Fg(z) = %1og Ef\il eB%i | which is commonly called the softmax function.
Observe that

log N
max z; < Fg(z) < maxx; + L,Vﬂ > 0.

B

Additionally, Fj is differentiable and Fg(x) — max; 2; as f — +00. So we can use the bound on Fg to
control the maximum. Hence Fj really is, by its name, a “soft” version of the maximum.
We assume without loss of generality that Z,Y are independent. Define the Gaussian interpolation

X(t)=V1—tZ+Vty, vte|o,1]

and consider the function ¢(t) = E[Fz(X ( )], Vvt € [0,1]. If we can show ¢'(t) > 0,Vt € (0,1), then we can
conclude that E [F3(Y)] = ¢(1) > ¢(0) = E[F3(Z)].
In order to do that, we first use the chain rule to write down the first derivative

N
§H) =3 E [gifm»x;(w} .

j=1
Note that
1 1
E [X;(t)X VI—iZi+ \/Eyi) 7t —Y,
e [ ( VTt 2Vt Jﬂ
(EYY;) -E[Z,Z)]), by independence and zero-meanness

<0, Vij
=0, i=/j, by assumption (2).

So we can write
Xi(t) = 0y Xj(t) + Wiy,
where W;;’s are Gaussian, W, := (Wy,,..., Wy;) is independent of X;(t), and a;; < 0,05 =0. !
Since Fj is twice differentiable, we may perform Taylor expansion

OF;

. J
Ox;

2
(X)) = T2 W)+ 30 T (1) X 1),

E (ZZ?(X@))X]'.@)] =E [(;ff }+Z {a%azz U)o X (t)?

N 2
~YE [M(U)ain'- (t)?] because W; L X (t)andE [X'(t)] = 0

where the last inequality holds because the soft-max function satisfies a’?:g‘; - (z) < 0,Vz,Vi # j. Thus we
have ¢'(t) > 0,Vt € (0,1), which yields E [F3(Z)] < E[F5(Y)]. Taking 8 — 400, we get

E [max ZZ} <E [maXYi} ,

which completes the proof. O

1X¢(t) can be seen as generated in this way because Gaussian distribution is determined by its mean and covariance.



Finally, there are some additional points worth mentioning.
e Note that our proof heavily relies on Gaussianity.

e Slepian’s inequality holds for any V. In fact, it holds for comparing the expectation of the supremum
over infinite sets.

e There is a stronger version called the Sudakov-Fernique theorem.

Theorem 2 (Sudakov-Fernique). Let Z,Y € RY be zero-mean Gaussian random vectors. Suppose
E[(Zi - Z)°] <E[(Yi - Y))’] i, j. (4)
Then E [max; Z;] < E [max; Y;].

It’s easy to see that Slepian’s inequality is just a corollary of the Sudakov-Fernique theorem.

3 Applications of Gaussian Comparison Inequalities

Next we return to the problem stated in the beginning.

3.1 Gaussian Matrices

First, we use the Slepian’s inequality to bound [|X||,,. We assume X € R"*", whose entries X;;’s are i.i.d.
standard normal. We next compare 2 Gaussian processes indexed by (u,v) with u,v € S"~1,

Zyy =u"Xv+e=(X,uv")+e  where e~ N(0,1) and ¢ is independent of X
Yo := g u+hTv where g,h ~ N(0, I,,) and they are independent.
It is easy to see that for all u,v € S*~!
2 12
E [Z3,] = llul3 o3 +1 =2
2 2
E[Y7] = lul; + vl = 2.
Furthermore, for any w,v,,? € S*!, we have
E [(Zuv - Zﬂ,f;)2] =E |:<X, UUT — ﬂ’LN)T>2}
= ™ - "
2 ~2 2 2 2 - - 12
= 1190w — a3+ s o — 003+ 2 (s — () (10,) — al2)
2 <12
< u—ally + [lv = 2[5,
where the last line can be justified by Cauchy-Schwarz inequality. For the other process, we have
- 12
E[(Yaw — Yaﬂ;)z] =E {(gT(u —a)+hT(v— 7)) }
12 <12
= [lu —allz + [[v—2ll5.

Consequently, E [(Zm, — Zﬂ’ﬁ)2] <E [(YM, — Ya’i)ﬂ. Hence

EZuoZas] = 5 (E [22,] +E [235] ~ E[(Zus — Z22)?))
2 % (E Y] +E[Ya] —E[(Yao — Zas)?]) by what we’ve proved
=E [YyYas) -



Now that we’ve established the assumptions (1), (2) in Slepain’s inequality, we can derive the bound

E| sup uv/'Xv|=E| sup uv'Xv+e
u,veESP—1 u,veESP—1
<E| sup g¢gTu+hrTv by Slepian’s inequality
w,veESP—1
=E[llglly + lIAll,]

< \/E [||g||§} + \/E {Hh”g} by Jensen’s inequality used on concave function /-
= 2y/n.

Note that in E [||X I Op} < 24/n, the constant 2 is tight. It demonstrates Gaussian matrices like X are very

well-behaved.
Recall from last lecture, we know

P [[1X0gp — E [IX]p]| 2 1] < .
Combing this concentration result with our bound on E {HX I op] , we eventually arrive at
[ X]|op < (2+€)vn, with probability > 1 — e~ /4, (5)

Remark If X € R™™ ™, we have E {HXHOP] < v/n+ +/m. The proof is similar. For Gaussian matrices

with heterogeneous variances, refer to this paper: Ramon van Handel, On the spectral norm of Gaussian
random matrices.?

3.2 Matrix Estimation

Recall our ground truth matrix Y* € R™*" with rank(Y™*) < r. We observe a Y = Y* 4+ F, where the entries
of E are i.i.d. N(0,1). Then we can define our estimator, which is the best rank-r approximation of Y,

V= argmin ||V -Z|,,.
Z:rank(Z)<r

We first bound the estimation error in spectral norm:

’Y—Y*

iy
op

o T =Y,
<2|Y*-Y|,, by optimality of ¥
=2|E,,

<6yn,  with probability >1— e "™/%.

where the last inequality follows from plugging in ¢ = 1 in (5). Thus

1 14 2 1 - 2 -
— Y =Y < —=2r HY -Y because rank(Y —Y™) < 2r
n? F n? op
<
~n

We see that r is considerably less than n, the estimation error is quite small.

2https://wuw.ams.org/journals/tran/2017-369-11/S0002-9947-2017-06922-1/



