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1 Motivation

Consider the following matrix estimation problem. Let Y ∗ ∈ Rn×n be an unknown low-rank matrix. Y is
a noisy version of Y ∗, with E [Y ] = Y ∗. Our task is to produce an estimator Ŷ by leveraging the low-rank
structure of Y ∗. To study the estimation error, we often need to control the quantity ‖Y − Y ∗‖op. The
question reduces to upper bounding ‖X‖op, where X is a random matrix with zero-mean.

We are going to introduce 3 approaches to bounding

‖X‖op = sup
u,v∈Sn−1

uTXv.

1. From previous lectures, we know ‖X‖op tends to concentrate around its mean E
[
‖X‖op

]
, because the

operator norm is convex and 1-Lipschitz continuous. Then the next step is to bound the expectation
of the supremum of an empirical process

E
[
‖X‖op

]
= E

[
sup

u,v∈Sn−1

uTXv

]
.

This can be achieved by Gaussian comparison inequalities.

2. Using the ε-net argument, we can bound the supremum by discretizing on Sn−1 and then invoking
union bound.

3. If we write X as the sum of independent matrices, X =
∑m
i=1X

(i), there are matrix versions of
concentration inequalities (Chernoff, Hoeffding, Berstein) that can help bound

∥∥∑m
i=1X

(i)
∥∥
op

.

2 Gaussian Comparison Inequalities

Theorem 1 (Slepian’s Inequality). Let Z, Y ∈ RN be zero-mean Gaussian random vectors such that

E
[
Z2
i

]
= E

[
Y 2
i

]
,∀i (1)

E [ZiZj ] ≥ E [YiYj ] ,∀i, j. (2)

Then we are guaranteed

E
[
max
i
Zi

]
≤ E

[
max
i
Yi

]
. (3)

Remark The theorem is basically saying that for zero-mean Gaussian processes, under the condition that
variances are equal, high correlations reduce the expectation of maximum. Think of the extreme case where
Z1 = Z2 = · · · = ZN . Then it is clear that the behavior of {Zi} is more controlled than {Yi}, due to much
higher correlations.
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Proof For β > 0, we introduce Fβ(x) = 1
β log

∑N
i=1 e

βxi , which is commonly called the softmax function.
Observe that

max
i
xi ≤ Fβ(x) ≤ max

i
xi +

logN

β
,∀β > 0.

Additionally, Fβ is differentiable and Fβ(x) → maxi xi as β → +∞. So we can use the bound on Fβ to
control the maximum. Hence Fβ really is, by its name, a “soft” version of the maximum.

We assume without loss of generality that Z, Y are independent. Define the Gaussian interpolation

X(t) =
√

1− tZ +
√
tY, ∀t ∈ [0, 1]

and consider the function φ(t) = E [Fβ(X(t))] ,∀t ∈ [0, 1]. If we can show φ′(t) ≥ 0,∀t ∈ (0, 1), then we can
conclude that E [Fβ(Y )] = φ(1) ≥ φ(0) = E [Fβ(Z)].

In order to do that, we first use the chain rule to write down the first derivative

φ′(t) =

N∑
j=1

E
[
∂Fβ
∂xj

(X(t))X ′j(t)

]
.

Note that

E
[
Xi(t)X

′
j(t)
]

= E
[(√

1− tZi +
√
tYi

)(
− 1

2
√

1− t
Zj +

1

2
√
t
Yj

)]
=

1

2
(E [YiYj ]− E [ZiZj ]) , by independence and zero-meanness{

≤ 0, ∀i, j
= 0, i = j, by assumption (2).

So we can write
Xi(t) = αijX

′
j(t) +Wij ,

where Wij ’s are Gaussian, Wj := (W1j , . . . ,WNj) is independent of X ′j(t), and αij ≤ 0, αii = 0. 1

Since Fβ is twice differentiable, we may perform Taylor expansion

∂Fβ
∂xj

(X(t)) =
∂Fβ
∂xj

(Wj) +

N∑
i=1

∂2Fβ
∂xj∂xi

(U)αijX
′
j(t),

where U ∈ RN is between X(t) and Wj . Taking expectations gives us

E
[
∂Fβ
∂xj

(X(t))X ′j(t)

]
= E

[
∂Fβ
∂xj

(Wj)X
′
j(t)

]
+

N∑
i=1

E
[
∂2Fβ
∂xj∂xi

(U)αijX
′
j(t)

2

]

=

N∑
i=1

E
[
∂2Fβ
∂xj∂xi

(U)αijX
′
j(t)

2

]
because Wj ⊥ X ′t(t)andE

[
X ′j(t)

]
= 0

≥ 0,

where the last inequality holds because the soft-max function satisfies
∂2Fβ
∂xj∂xi

(x) ≤ 0,∀x,∀i 6= j. Thus we

have φ′(t) ≥ 0,∀t ∈ (0, 1), which yields E [Fβ(Z)] ≤ E [Fβ(Y )]. Taking β → +∞, we get

E
[
max
i
Zi

]
≤ E

[
max
i
Yi

]
,

which completes the proof.

1Xi(t) can be seen as generated in this way because Gaussian distribution is determined by its mean and covariance.
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Finally, there are some additional points worth mentioning.

• Note that our proof heavily relies on Gaussianity.

• Slepian’s inequality holds for any N . In fact, it holds for comparing the expectation of the supremum
over infinite sets.

• There is a stronger version called the Sudakov-Fernique theorem.

Theorem 2 (Sudakov-Fernique). Let Z, Y ∈ RN be zero-mean Gaussian random vectors. Suppose

E
[
(Zi − Zj)2

]
≤ E

[
(Yi − Yj)2

]
,∀i, j. (4)

Then E [maxi Zi] ≤ E [maxi Yi].

It’s easy to see that Slepian’s inequality is just a corollary of the Sudakov-Fernique theorem.

3 Applications of Gaussian Comparison Inequalities

Next we return to the problem stated in the beginning.

3.1 Gaussian Matrices

First, we use the Slepian’s inequality to bound ‖X‖op. We assume X ∈ Rn×n, whose entries Xij ’s are i.i.d.

standard normal. We next compare 2 Gaussian processes indexed by (u, v) with u, v ∈ Sn−1,

Zuv := uTXv + ε =
〈
X,uvT

〉
+ ε where ε ∼ N(0, 1) and ε is independent of X

Yuv := gTu+ hT v where g, h ∼ N(0, In) and they are independent.

It is easy to see that for all u, v ∈ Sn−1

E
[
Z2
uv

]
= ‖u‖22 ‖v‖

2
2 + 1 = 2

E
[
Y 2
uv

]
= ‖u‖22 + ‖v‖22 = 2.

Furthermore, for any u, v, ũ, ṽ ∈ Sn−1, we have

E
[
(Zuv − Zũ,ṽ)2

]
= E

[〈
X,uvT − ũṽT

〉2]
=
∥∥uvT − ũṽT∥∥2

F

= ‖ṽ‖22 ‖u− ũ‖
2
2 + ‖u‖22 ‖v − ṽ‖

2
2 + 2

(
‖u‖22 − 〈u, ũ〉

)(
〈v, ṽ〉 − ‖ṽ‖22

)
≤ ‖u− ũ‖22 + ‖v − ṽ‖22 ,

where the last line can be justified by Cauchy-Schwarz inequality. For the other process, we have

E
[
(Yuv − Yũ,ṽ)2

]
= E

[(
gT (u− ũ) + hT (v − ṽ)

)2]
= ‖u− ũ‖22 + ‖v − ṽ‖22 .

Consequently, E
[
(Zuv − Zũ,ṽ)2

]
≤ E

[
(Yuv − Yũ,ṽ)2

]
. Hence

E [ZuvZũṽ] =
1

2

(
E
[
Z2
uv

]
+ E

[
Z2
ũṽ

]
− E

[
(Zuv − Zũṽ)2

])
≥ 1

2

(
E
[
Y 2
uv

]
+ E

[
Y 2
ũṽ

]
− E

[
(Yuv − Zũṽ)2

])
by what we’ve proved

= E [YuvYũṽ] .
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Now that we’ve established the assumptions (1), (2) in Slepain’s inequality, we can derive the bound

E

[
sup

u,v∈Sn−1

uTXv

]
= E

[
sup

u,v∈Sn−1

uTXv + ε

]

≤ E

[
sup

u,v∈Sn−1

gTu+ hT v

]
by Slepian’s inequality

= E [‖g‖2 + ‖h‖2]

≤
√
E
[
‖g‖22

]
+

√
E
[
‖h‖22

]
by Jensen’s inequality used on concave function

√
·

= 2
√
n.

Note that in E
[
‖X‖op

]
≤ 2
√
n, the constant 2 is tight. It demonstrates Gaussian matrices like X are very

well-behaved.
Recall from last lecture, we know

P
[∣∣∣‖X‖op − E

[
‖X‖op

]∣∣∣ ≥ t] ≤ e−t2/4.
Combing this concentration result with our bound on E

[
‖X‖op

]
, we eventually arrive at

‖X‖op ≤ (2 + ε)
√
n, with probability ≥ 1− e−ε

2n/4. (5)

Remark If X ∈ Rn×m, we have E
[
‖X‖op

]
≤
√
n +
√
m. The proof is similar. For Gaussian matrices

with heterogeneous variances, refer to this paper: Ramon van Handel, On the spectral norm of Gaussian
random matrices.2

3.2 Matrix Estimation

Recall our ground truth matrix Y ∗ ∈ Rn×n with rank(Y ∗) ≤ r. We observe a Y = Y ∗+E, where the entries
of E are i.i.d. N(0, 1). Then we can define our estimator, which is the best rank-r approximation of Y ,

Ŷ = arg min
Z:rank(Z)≤r

‖Y − Z‖op .

We first bound the estimation error in spectral norm:∥∥∥Ŷ − Y ∗∥∥∥
op
≤
∥∥∥Ŷ − Y ∥∥∥

op
+ ‖Y ∗ − Y ‖op

≤ 2 ‖Y ∗ − Y ‖op by optimality of Ŷ

= 2 ‖E‖op
≤ 6
√
n, with probability ≥ 1− e−n/4.

where the last inequality follows from plugging in ε = 1 in (5). Thus

1

n2

∥∥∥Ŷ − Y ∗∥∥∥2
F
≤ 1

n2
2r
∥∥∥Ŷ − Y ∗∥∥∥2

op
because rank(Ŷ − Y ∗) ≤ 2r

.
r

n
.

We see that r is considerably less than n, the estimation error is quite small.
2https://www.ams.org/journals/tran/2017-369-11/S0002-9947-2017-06922-1/
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