> ORIE 7790 High Dimensional Probability and Statistics Lecture $7-8-02 / 16 / 2020$ Lecture 8: Random Matrices II: ε-net Lecturer: Yudong Chen

References:

- R. Vershynin, High dimensional Probability, Sections 4.2, 4.4, 4.6.
- M. J. Wainwright, High-dimensional statistics: A non-asymptotic viewpoint, Sections 6.1, 6.3.

1ε-net Argument

This argument contains three steps:

- Discretize \mathbb{S}^{n-1}.
- Bound $\|X u\|_{2}$ for each fixed $u \in \mathbb{S}^{n-1}$.
- Union Bound.

Definition 1 (ε-net). $T_{\varepsilon} \subset T$ is called an ε-net of T (w.r.t. ℓ_{2} norm) if

$$
\forall u \in T \quad \exists u_{0} \in T_{\varepsilon}:\left\|u-u_{0}\right\| \leq \varepsilon .
$$

Definition 2 (Covering Number). The smallest cardinality of an ε-net of T is called the covering number of T and denoted by $N(\varepsilon, T)$. The quantity $\log N(\varepsilon, T)$ is called the metric entropy of T.

Now we have a lemma about covering number of unit sphere.
Lemma 1 (Covering the l_{2} ball and sphere). Recall that

$$
B^{n}=\left\{u \in \mathbb{R}^{n}:\|u\| \leq 1\right\}, \quad \mathbb{S}^{n-1}=\left\{u \in \mathbb{R}^{n}:\|u\| \leq 1\right\} .
$$

We have

$$
N\left(\varepsilon, \mathbb{S}^{n-1}\right) \leq N\left(\frac{\varepsilon}{2}, B^{n}\right) \leq\left(\frac{4}{\varepsilon}+1\right)^{n}
$$

Proof Exercise.
Remark We also have $N\left(\frac{\varepsilon}{2}, B^{n}\right) \geq\left(\frac{2}{\varepsilon}\right)^{n}$, so the upper bound is quite tight.
Lemma 2. For any $\varepsilon \in[0,1)$ and ε-net \mathbb{S}_{ε} of \mathbb{S}^{n-1}, we have

$$
\|X\|_{\mathrm{op}} \leq \frac{1}{1-\varepsilon} \sup _{u \in \mathrm{~S}_{\varepsilon}}\|X u\|_{2}
$$

Proof By compactness of \mathbb{S}^{n-1}, we can choose $u \in \mathbb{S}^{n-1}$ such that $\|X\|_{\text {op }}=\|X u\|_{2}$. By definition of ε-net, we can find $u_{0} \in \mathbb{S}_{\varepsilon}$ such that $\left\|u-u_{0}\right\|_{2} \leq \varepsilon$. Then we have

$$
\begin{aligned}
\|X\|_{\mathrm{op}} & =\|X u\|_{2} \\
& \leq\left\|X u_{0}\right\|_{2}+\left\|X u-X u_{0}\right\|_{2} \\
& \leq \sup _{u \in \mathbb{S}_{\varepsilon}}\|X u\|_{2}+\varepsilon\|X\|_{\mathrm{op}}
\end{aligned}
$$

Rearrange it, we get

$$
\|X\|_{\mathrm{op}} \leq \frac{1}{1-\varepsilon} \sup _{u \in \mathbb{S}_{\varepsilon}}\|X u\|_{2}
$$

With a slight modification of the proof of Lemma 2, we can get
Lemma 3. Suppose $X \in \mathbb{R}^{n \times n}$ is symmetric. For any $\varepsilon \in\left[0, \frac{1}{2}\right)$ and ε-net \mathbb{S}_{ε} of \mathbb{S}^{n-1}, we have

$$
\|X\|_{\mathrm{op}} \leq \frac{1}{1-2 \varepsilon} \sup _{u \in \mathbb{S}_{\varepsilon}}\left|u^{T} X u\right|
$$

Proof Since X is symmetric, we can find $u \in \mathbb{S}^{n-1}$ such that $\|X\|_{\mathrm{op}}=\left|u^{T} X u\right|$. By definition of ε-net, we can find $u_{0} \in \mathbb{S}_{\varepsilon}$ such that $\left\|u-u_{0}\right\|_{2} \leq \varepsilon$. Then we have

$$
\begin{aligned}
\|X\|_{\mathrm{op}} & =\left|u^{T} X u\right| \\
& =\left|u_{0}^{T} X u_{0}+\left(u-u_{0}\right)^{T} X\left(u+u_{0}\right)\right| \\
& \leq\left|u_{0}^{T} X u_{0}\right|+\left|\left(u-u_{0}\right)^{T} X\left(u+u_{0}\right)\right| \\
& \leq \sup _{u \in \mathbb{S}_{\varepsilon}}\left|u^{T} X u\right|+2 \varepsilon\|X\|_{\mathrm{op}}
\end{aligned}
$$

In the last inequality, we used the fact that $u, u_{0} \in \mathbb{S}^{n-1}$ and $\left\|u-u_{0}\right\| \leq \varepsilon$. Rearranging, we get

$$
\|X\|_{\mathrm{op}} \leq \frac{1}{1-2 \varepsilon} \sup _{u \in \mathbb{S}_{\varepsilon}}\left|u^{T} X u\right|
$$

With all the lemmas above, we have the following theorem about operator norm of random matrix with independent sub-Gaussian columns.

Theorem 1. Suppose $X \in \mathbb{R}^{m \times n}$, whose columns $X_{j} \in \mathbb{R}^{m}$ are independent, zero-mean, isotropic $\left(\mathbb{E}\left[X_{j} X_{j}^{T}\right]=\right.$ I_{m}) and sub-Gaussian with parameter σ^{2}. Then

$$
\left\|\frac{1}{n} X X^{T}-I_{m}\right\|_{\mathrm{op}} \lesssim \sigma^{2} \max \left\{\sqrt{\frac{m}{n}}, \frac{m}{n}\right\}
$$

with probability at least $1-2 e^{-m}$. Consequently,

$$
\sqrt{n}-c \sigma \sqrt{m} \leq s_{m}(X) \leq s_{1}(X) \leq \sqrt{n}+c \sigma \sqrt{m}
$$

Here $s_{1}(X)$ and $s_{m}(X)$ are largest and smallest singular values of X, respectively. c is some constant.
Proof Fix $\varepsilon=\frac{1}{4}$, let \mathbb{S}_{ε} be the smallest ε-net of \mathbb{S}^{m-1}. By lemma 1, we know $\left|\mathbb{S}_{\varepsilon}\right| \leq 17^{m}$. By lemma 3, we know

$$
\begin{align*}
\left\|\frac{1}{n} X X^{T}-I_{m}\right\|_{\text {op }} & \leq 2 \max _{u \in \mathbb{S}_{\varepsilon}}\left|u^{T}\left(\frac{1}{n} X X^{T}-I_{m}\right) u\right| \\
& =2 \max _{u \in \mathbb{S}_{\varepsilon}}\left|\frac{1}{n}\left\|X^{T} u\right\|_{2}^{2}-1\right| \tag{*}
\end{align*}
$$

For fixed $u \in \mathbb{S}_{\varepsilon}$,

$$
\left\|X^{T} u\right\|_{2}^{2}=\sum_{j=1}^{n}\left\langle X_{j}, u\right\rangle^{2}
$$

Let $Z_{j}=\left\langle X_{j}, u\right\rangle$, note that Z_{j} 's are independent of each other, σ^{2} sub-Gaussian by definition and $\mathbb{E}\left[Z_{j}^{2}\right]=1$, and since the square of a sub-Gaussian random variable is sub-Exponential, we have

$$
\left\|Z_{j}^{2}-1\right\|_{\psi_{1}} \lesssim \sigma^{2}
$$

By Bernstein Inequality, for $t=c \sigma^{2} \max \left\{\sqrt{\frac{m}{n}}, \frac{m}{n}\right\}$ with sufficient large c, we have

$$
\begin{aligned}
\mathbb{P}\left[\left|\frac{1}{n}\left\|X^{T} u\right\|_{2}^{2}-1\right| \geq \frac{t}{2}\right] & \leq 2 \exp \left(-c^{\prime} n \min \left\{\frac{t^{2}}{\sigma^{4}}, \frac{t}{\sigma^{2}}\right\}\right) \\
& \leq 2 \exp \left(-c^{\prime \prime} n \frac{m}{n}\right) \\
& =2 \exp \left(-c^{\prime \prime} m\right)
\end{aligned}
$$

Here c^{\prime} and $c^{\prime \prime}$ are other constants which we don't specify. $c^{\prime \prime}$ can be sufficiently large as long as c is sufficiently large. Now, by Union bound and *, we know

$$
\begin{aligned}
\mathbb{P}\left[\left\|\frac{1}{n} X X^{T}-I_{m}\right\|_{\mathrm{op}} \geq t\right] & \leq \mathbb{P}\left[\max _{u \in \mathbb{S}_{\varepsilon}}\left|\frac{1}{n}\left\|X^{T} u\right\|_{2}^{2}-1\right| \geq \frac{t}{2}\right] \\
& \leq 2 \cdot 17^{m} \exp \left(-c^{\prime \prime} m\right) \\
& \leq 2 e^{-m}
\end{aligned}
$$

The last inequality holds for sufficient large $c^{\prime \prime}$.
The proof of "Consequently" part is left as an exercise. So we are done.

Remark

- In this proof, we only require independent columns(rather that entries) of X.
- We get two-sided bounds on largest/smallest singular values.
- If $m \ll n$, in which case the matrix is very "rectangular", then

$$
\begin{align*}
& s_{m}(X) \geq \sqrt{n}-c \sigma \sqrt{m}>0 \tag{1}\\
& \left\|\frac{1}{n} X X^{T}-I_{m}\right\|_{\mathrm{op}} \lesssim \sqrt{\frac{m}{n}}<1 \tag{2}
\end{align*}
$$

The first inequality says X is non-singular, and the second one implies $X X^{T}$ is invertible. Both statements are true with high probability.

- If $X_{i j} \stackrel{\text { iid }}{\sim} N\left(0, \sigma^{2}\right)$ and $n=m$, then

$$
\|X\|_{\mathrm{op}} \leq c \sqrt{n} \quad \text { w.p. } \geq 1-2 e^{-n}
$$

This recovers the Gaussian matrix result from last lecture, but with worse constant. Note that the previous bound is:

$$
\|X\|_{\mathrm{op}} \leq(2+\varepsilon) \sqrt{n} \quad \text { w.p. } \geq 1-2 e^{-\frac{\varepsilon^{2} n}{2}}
$$

- If $X_{i j}$'s are sub-Exponential, what can you derive using ε-net?

2 Applications to Covariance Estimation

Suppose we observe $Y_{1}, Y_{2}, \ldots, Y_{n} \in \mathbb{R}^{m}$ sampled i.i.d. from $N(0, \Sigma)$.
Goal: to estimate the covariance matrix Σ.
We use the empirical covariance:

$$
\hat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{T}
$$

Note that $\mathbb{E}[\hat{\Sigma}]=\Sigma$, so it's unbiased. We want to bound $\|\hat{\Sigma}-\Sigma\|_{\text {op }}$. By change of variables, let

$$
Y_{i}=\Sigma^{\frac{1}{2}} X_{i}, \text { where } X_{i} \sim N\left(0, I_{m}\right)
$$

Let $X \triangleq\left(X_{1}, X_{2}, \ldots X_{n}\right)$, then $X \in \mathbb{R}^{m \times n}$ has isotropic, independent, sub-Gaussian columns. By Theorem 1, we know

$$
\left\|\frac{1}{n} X X^{T}-I_{m}\right\|_{\mathrm{op}} \lesssim \sqrt{\frac{m}{n}}+\frac{m}{n}
$$

with probability at least $1-2 e^{-m}$. Consequently, with probability at least $1-2 e^{-m}$, we have

$$
\begin{aligned}
\|\hat{\Sigma}-\Sigma\|_{\mathrm{op}} & =\left\|\frac{1}{n} Y Y^{T}-\Sigma\right\|_{\mathrm{op}} \\
& =\left\|\frac{1}{n} \Sigma^{\frac{1}{2}} X X^{T} \Sigma^{\frac{1}{2}}-\Sigma^{\frac{1}{2}} \Sigma^{\frac{1}{2}}\right\|_{\mathrm{op}} \\
& \leq\left\|\Sigma^{\frac{1}{2}}\right\|_{\mathrm{op}}^{2}\left\|\frac{1}{n} X X^{T}-I_{m}\right\|_{\mathrm{op}} \\
& \lesssim\|\Sigma\|_{\mathrm{op}}\left(\sqrt{\frac{m}{n}}+\frac{m}{n}\right)
\end{aligned}
$$

Remark

- Sample complexity: $n \gtrsim \frac{m}{\varepsilon^{2}} \Rightarrow \frac{\|\hat{\Sigma}-\Sigma\|_{\mathrm{op}}}{\|\Sigma\|_{\mathrm{op}}} \leq \varepsilon$. So when $n \gg \frac{m}{\varepsilon^{2}}, \frac{\|\hat{\Sigma}-\Sigma\|_{\mathrm{op}}}{\|\Sigma\|_{\mathrm{op}}} \rightarrow 0$ (consistency.)
- It can be generalized to the case in which Y_{i} 's are sub-Gaussian.

