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1 ε-net Argument

This argument contains three steps:

• Discretize Sn−1.

• Bound ‖Xu‖2 for each fixed u ∈ Sn−1.

• Union Bound.

Definition 1 (ε-net). Tε ⊂ T is called an ε-net of T (w.r.t. `2 norm) if

∀u ∈ T ∃u0 ∈ Tε : ‖u− u0‖ ≤ ε.

Definition 2 (Covering Number). The smallest cardinality of an ε-net of T is called the covering number
of T and denoted by N(ε, T ). The quantity logN(ε, T ) is called the metric entropy of T .

Now we have a lemma about covering number of unit sphere.

Lemma 1 (Covering the l2 ball and sphere). Recall that

Bn = {u ∈ Rn : ‖u‖ ≤ 1}, Sn−1 = {u ∈ Rn : ‖u‖ ≤ 1}.

We have

N(ε,Sn−1) ≤ N(
ε

2
, Bn) ≤ (

4

ε
+ 1)n

Proof Exercise.

Remark We also have N( ε2 , B
n) ≥ ( 2

ε )n, so the upper bound is quite tight.

Lemma 2. For any ε ∈ [0, 1) and ε-net Sε of Sn−1, we have

‖X‖op ≤
1

1− ε
sup
u∈Sε
‖Xu‖2

Proof By compactness of Sn−1, we can choose u ∈ Sn−1 such that ‖X‖op = ‖Xu‖2. By definition of
ε-net, we can find u0 ∈ Sε such that ‖u− u0‖2 ≤ ε. Then we have

‖X‖op = ‖Xu‖2
≤ ‖Xu0‖2 + ‖Xu−Xu0‖2
≤ sup
u∈Sε
‖Xu‖2 + ε ‖X‖op
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Rearrange it, we get

‖X‖op ≤
1

1− ε
sup
u∈Sε
‖Xu‖2

With a slight modification of the proof of Lemma 2, we can get

Lemma 3. Suppose X ∈ Rn×n is symmetric. For any ε ∈ [0, 1
2 ) and ε-net Sε of Sn−1, we have

‖X‖op ≤
1

1− 2ε
sup
u∈Sε
|uTXu|.

Proof Since X is symmetric, we can find u ∈ Sn−1 such that ‖X‖op = |uTXu|. By definition of ε-net, we
can find u0 ∈ Sε such that ‖u− u0‖2 ≤ ε. Then we have

‖X‖op = |uTXu|

= |uT0 Xu0 + (u− u0)TX(u+ u0)|
≤ |uT0 Xu0|+ |(u− u0)TX(u+ u0)|
≤ sup
u∈Sε
|uTXu|+ 2ε ‖X‖op

In the last inequality, we used the fact that u, u0 ∈ Sn−1 and ‖u− u0‖ ≤ ε. Rearranging, we get

‖X‖op ≤
1

1− 2ε
sup
u∈Sε
|uTXu|.

With all the lemmas above, we have the following theorem about operator norm of random matrix with
independent sub-Gaussian columns.

Theorem 1. Suppose X ∈ Rm×n, whose columns Xj ∈ Rm are independent, zero-mean, isotropic (E
[
XjX

T
j

]
=

Im) and sub-Gaussian with parameter σ2. Then∥∥∥∥ 1

n
XXT − Im

∥∥∥∥
op

. σ2 max{
√
m

n
,
m

n
}

with probability at least 1− 2e−m. Consequently,

√
n− cσ

√
m ≤ sm(X) ≤ s1(X) ≤

√
n+ cσ

√
m.

Here s1(X) and sm(X) are largest and smallest singular values of X, respectively. c is some constant.

Proof Fix ε = 1
4 , let Sε be the smallest ε-net of Sm−1. By lemma 1, we know |Sε| ≤ 17m. By lemma 3,

we know ∥∥∥∥ 1

n
XXT − Im

∥∥∥∥
op

≤ 2 max
u∈Sε
|uT (

1

n
XXT − Im)u|

= 2 max
u∈Sε
| 1
n

∥∥XTu
∥∥2

2
− 1| (*)
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For fixed u ∈ Sε, ∥∥XTu
∥∥2

2
=

n∑
j=1

〈Xj , u〉2.

Let Zj = 〈Xj , u〉, note that Zj ’s are independent of each other, σ2 sub-Gaussian by definition and E
[
Z2
j

]
= 1,

and since the square of a sub-Gaussian random variable is sub-Exponential, we have∥∥Z2
j − 1

∥∥
ψ1

. σ2.

By Bernstein Inequality, for t = cσ2 max{
√

m
n ,

m
n } with sufficient large c, we have

P
[
| 1
n

∥∥XTu
∥∥2

2
− 1| ≥ t

2

]
≤ 2 exp(−c′nmin{ t

2

σ4
,
t

σ2
})

≤ 2 exp(−c′′nm
n

)

= 2 exp(−c′′m)

Here c′ and c′′ are other constants which we don’t specify. c′′ can be sufficiently large as long as c is
sufficiently large. Now, by Union bound and *, we know

P

[∥∥∥∥ 1

n
XXT − Im

∥∥∥∥
op

≥ t

]
≤ P

[
max
u∈Sε
| 1
n

∥∥XTu
∥∥2

2
− 1| ≥ t

2

]
≤ 2 · 17m exp(−c′′m)

≤ 2e−m

The last inequality holds for sufficient large c′′.
The proof of ”Consequently” part is left as an exercise. So we are done.

Remark

• In this proof, we only require independent columns(rather that entries) of X.

• We get two-sided bounds on largest/smallest singular values.

• If m� n, in which case the matrix is very ”rectangular”, then

sm(X) ≥
√
n− cσ

√
m > 0 (1)∥∥∥∥ 1

n
XXT − Im

∥∥∥∥
op

.

√
m

n
< 1 (2)

The first inequality says X is non-singular, and the second one implies XXT is invertible. Both
statements are true with high probability.

• If Xij
iid∼ N(0, σ2) and n = m, then

‖X‖op ≤ c
√
n w.p. ≥ 1− 2e−n

This recovers the Gaussian matrix result from last lecture, but with worse constant. Note that the
previous bound is:

‖X‖op ≤ (2 + ε)
√
n w.p. ≥ 1− 2e−

ε2n
2

• If Xij ’s are sub-Exponential, what can you derive using ε-net?
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2 Applications to Covariance Estimation

Suppose we observe Y1, Y2, . . . , Yn ∈ Rm sampled i.i.d. from N(0,Σ).
Goal: to estimate the covariance matrix Σ.
We use the empirical covariance:

Σ̂ =
1

n

n∑
i=1

YiY
T
i .

Note that E
[
Σ̂
]

= Σ, so it’s unbiased. We want to bound
∥∥∥Σ̂− Σ

∥∥∥
op

. By change of variables, let

Yi = Σ
1
2Xi, where Xi ∼ N(0, Im)

LetX , (X1, X2, . . . Xn), thenX ∈ Rm×n has isotropic, independent, sub-Gaussian columns. By Theorem 1,
we know ∥∥∥∥ 1

n
XXT − Im

∥∥∥∥
op

.

√
m

n
+
m

n

with probability at least 1− 2e−m. Consequently, with probability at least 1− 2e−m, we have∥∥∥Σ̂− Σ
∥∥∥

op
=

∥∥∥∥ 1

n
Y Y T − Σ

∥∥∥∥
op

=

∥∥∥∥ 1

n
Σ

1
2XXTΣ

1
2 − Σ

1
2 Σ

1
2

∥∥∥∥
op

≤
∥∥∥Σ

1
2

∥∥∥2

op

∥∥∥∥ 1

n
XXT − Im

∥∥∥∥
op

. ‖Σ‖op (

√
m

n
+
m

n
)

Remark

• Sample complexity: n & m
ε2 ⇒

‖Σ̂−Σ‖
op

‖Σ‖op
≤ ε. So when n� m

ε2 ,
‖Σ̂−Σ‖

op

‖Σ‖op
→ 0(consistency.)

• It can be generalized to the case in which Yi’s are sub-Gaussian.

4


