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1 e-net Argument

This argument contains three steps:
e Discretize S*~1.
e Bound || Xul|, for each fixed u € S"~1.
e Union Bound.
Definition 1 (e-net). T. C T is called an e-net of T (w.r.t. £y norm,) if
VueT Jug €T :|lu—upl <e.

Definition 2 (Covering Number). The smallest cardinality of an e-net of T is called the covering number
of T and denoted by N(e,T). The quantity log N(g,T) is called the metric entropy of T.

Now we have a lemma about covering number of unit sphere.

Lemma 1 (Covering the l» ball and sphere). Recall that
B"={ueR": |lu| <1}, S" ' ={ueR": |lul| <1}.

We have 4

N(S") S N5, B") < (- +1)"
€

Proof Exercise. O

Remark We also have N(5,B") > (%)"7 so the upper bound is quite tight.

Lemma 2. For any € € [0,1) and e-net S. of S*™1, we have

[X1op <

X
op S T SWP [ Xull

Proof By compactness of S"~!  we can choose u € S"~! such that [Xll,, = [[Xull,. By definition of
e-net, we can find ug € S, such that ||u —ug|, < e. Then we have

||XH0p = HXU’HQ

[ Xuolly + ([ Xu = Xuoll,
sup HXU’||2 te ||XHop
UESE
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Rearrange it, we get

x| < sup || X
[ ||op_1_552812|| ull,

With a slight modification of the proof of Lemma 2, we can get

Lemma 3. Suppose X € R"*" is symmetric. For any ¢ € [0, %) and e-net S. of S*71, we have

X|| .. < s T Xul.
[ ||0p_1_26u£|u ul

Proof Since X is symmetric, we can find u € S"~! such that X, = |u” Xu|. By definition of e-net, we
can find ug € S, such that ||u — up||, < e. Then we have

1X o = 0" Xul
= |ud Xug + (u —uo)" X (u + up)|

< Jug Xuo| + |(u — uo)" X (u+uo)|
< sup |u” Xu| + 2¢ 1Xlop
uES,

In the last inequality, we used the fact that u,uy € S*~1 and ||u — ug|| < e. Rearranging, we get

X lop <

T
Xul.
P = 17255&2'” ul

With all the lemmas above, we have the following theorem about operator norm of random matrix with
independent sub-Gaussian columns.

Theorem 1. Suppose X € R™*", whose columns X; € R™ are independent, zero-mean, isotropic (E [XjXﬂ
I,,) and sub-Gaussian with parameter o2. Then

1
~xxT -1,
n

op
with probability at least 1 — 2e~". Consequently,

Vn —coym < s, (X) < 51(X) < V/n+ covm.
Here s1(X) and $,,(X) are largest and smallest singular values of X, respectively. c is some constant.

Proof Fixe= i, let S. be the smallest e-net of S™~!. By lemma 1, we know [S.| < 17™. By lemma 3,
we know

1 1
“XXT Il <2maxu? (=XXT —I,,)ul
n op UES, n
1 2
=2 X T||D -1 *
max | || X ul|, 1] ()



For fixed u € Sq,

n

X7y = > (x5

Jj=1

Let Z; = (X, u), note that Z;’s are independent of each other, o? sub-Gaussian by definition and E [Z?] =1,
and since the square of a sub-Gaussian random variable is sub-Exponential, we have

127 =1, s o*

By Bernstein Inequality, for ¢t = co? max{, /™, 1 with sufficient large ¢, we have

1 t 2t
P |ﬁ HXTuH; -1 > 3 < 2exp(—c’nmin{;, ﬁ})
< 2exp(—c”n@)
n

= 2exp(—c’'m)

Here ¢’ and ¢” are other constants which we don’t specify. ¢’ can be sufficiently large as long as c is
sufficiently large. Now, by Union bound and *, we know

1 1 t
Pl|=XXT ~1,| >t|<P [max| Xl 1> =
n op u€S. N 2
<2-17"exp(—c’m)
<2 ™
The last inequality holds for sufficient large ¢’’.
The proof of ”Consequently” part is left as an exercise. So we are done. O

Remark
e In this proof, we only require independent columns(rather that entries) of X.
e We get two-sided bounds on largest/smallest singular values.

e If m < n, in which case the matrix is very "rectangular”, then

sm(X) > v/n—coym >0 (1)

1
<2<t 2)
op n

n
The first inequality says X is non-singular, and the second one implies X X7 is invertible. Both
statements are true with high probability.

xXxXT 1,

o If X;; id N(0,0?) and n = m, then

Xl < cv/n wp.>1-—2"
This recovers the Gaussian matrix result from last lecture, but with worse constant. Note that the
previous bound is:

5271,

[X[lpp £ 2+e)Vn wp. >1-2e"2

o If X;;’s are sub-Exponential, what can you derive using e-net?



2 Applications to Covariance Estimation

Suppose we observe Y7,Ys,...,Y,, € R™ sampled i.i.d. from N(0,X).
Goal: to estimate the covariance matrix X.
We use the empirical covariance:

PO [
zzgl;m’f-

Note that E [f]} = ), so it’s unbiased. We want to bound Hf] -

. By change of variables, let
op

Y; = $2 X;, where X; ~ N(0,,,)

Let X £ (X1, X5,...X,,), then X € R™*" has isotropic, independent, sub-Gaussian columns. By Theorem 1,

we know
m m
Sy
op n n

1
“XXT-1,
n

with probability at least 1 — 2e~". Consequently, with probability at least 1 — 2¢™"™, we have
~ 1 T
Hz —x| = vyT-3z
op n op
- EE%XXTZ% _Nins
n op
2 1
<=z ||-xXxT -1,
op ||V op
m m
) oy
S ap (2 + )
Remark
co s m B3, m 1E==l,, :
e Sample complexity: n 2 75 = T <e. So when n>> 73, T 0(consistency.)
op op

e It can be generalized to the case in which Y;’s are sub-Gaussian.



