ORIE 7790 High Dimensional Probability and Statistics Lecture 9 - Feb. 18, 2020

Lecture 9: Matrix Concentration inequalities

Lecturer: Yudong Chen Scribe: Vasilis Charisopoulos

In this lecture, we state the Matrix Bernstein inequality and sketch a few interesting applications.
References:

e The proof for the Matrix Bernstein inequality can be found in Vershynin’s book [2, Chapter 5.4]. Also
see Chapter 6.6 therein.

e An exposition of the matrix Chernoff method can be found in Tropp’s paper [1], along with bounds
extending beyond the case of rectangular bounded matrices.

e Also related: Wainwright’s book [3, Chapter 6.4]

1 Matrix concentration inequalities

The general idea: write a random matrix X as the sum of “simple” random matrices ), X (@)

Theorem 1 (Matrix Bernstein inequality). Suppose that XO X0 e RmiXme gre independent, zero-
mean random matrices with
} < 2.
op op

||X(i)||OlD <b a.s., {’
Then we have
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Remark. In the 1-dimensional case, the quantity o2 reduces to the sum of variances of each element.
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The proof proceeds quite naturally by mimicking that of the scalar Bernstein inequality, with one impor-
tant difference: in the scalar case, we have E (eX*Y) = E (eX) E (e¥). This is no longer true generically in the
matrix world, because matrices are not commutative in general. However, we can use the Golden-Thompson
inequality instead:

tr(eXTY) < tr(eX - eY)

Alternatively, one may use the Lieb’s theorem, as is done in [1]

2 Applications

i.i.d.

Example 1 (Matrices with independent entries). Suppose ¥ € R™*™ with Y;; = ¢;; '~ Unif{—1,1}. We

write Y as
Y = 25”6 e; ZY(W

To apply Theorem 1, we need to check the conditions. Verlfymg the first condition is easy since || Y (%7) lop =1
implying b = 1. On the other hand

E (Y@ TY®D) =E(e7 jeje ere] ) = eje] = ZE Ty )y = nr, (2)



The same argument applies to the other sum, hence 02 = n. By Matrix Bernstein with ¢ := Cy/nlogn, we
have

1 vnl ’
P (||Y||Op > Cy/nlogn) < 2nexp (—cmin {ﬁ’;ign’ n;)gn}) = 2nexp (—clogn) =2n"° (3)
for some constant ¢ > 0. Therefore, with probability at least 1 — 2n~¢", we get 1Yl,, < vnlogn. Notice
that we are loose by a factor of y/logn compared to the bounds derived for Gaussian random matrices.

Example 2 (Matrix Completion). Suppose we are given Y* € R"*" with rank(Y™*) = r and |Y5| < 1, Vi, j.

Observe:
Y .
V=1, ur’ (4)
0, w.p. 1—p

Moreover, assume that p < 1. It’s easy to check that E (Y;;) = pY;;. This is a special case of the matrix
estimation problem, so we’ll take

Y := argmin
Z:rank(Z)<r
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To bound the error of this estimator (in Frobenius norm), we can write
1 2
n?

?fY*|}i§%”fo?* (6)

1
p op

This reduces to bounding the operator norm of random matrix with independent, zero mean entries. Define

A ]‘ * Yl; * * 1
Zij = I;Yij —Yj; = |Zij| < max Y =YL Y5l < »
Thus Z;; is subgaussian with parameter p%, so using the results of last week we obtain ||Z]|,, < /- % =
- 2
7712 HY — Y*HF < anz. Let us try the Matrix Bernstein inequality:
Lemma 1 (Homework). For the matrices defined above, we have
1 nlogn logn
P op p p
with probability at least 1 — 2n~°.
Using Lemma 1, we have reduced the dependence to p from % to ﬁ, which is desirable since we are

interested in p — 0. Simplifying we get
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Observe that we can set p as low as Tilos%”, for some € € (0, 1] and still satisfy = HY — Y*HF < €2,

Example 3 (Preference matrix completion). This problem can be posed as a ranking problem from pairwise
comparisons. The setup follows:

e suppose we have n teams with unknown ranking (assume such a ranking exists).

e if team 7 is better than team j, we have

P (i beats k) > P (j beats k), Vk.



e a match is played between teams ¢ and j with probability p. Let the probability of i beating j be Y.

e we observe

1, wp.  pYj,
Yij =40, wp. p(l-Y3) (7)

The first case in (7) corresponds to ¢ beating j, the second case is j beating i, and the third case
happens when no game was played.

For simplicity, let us assume that everything is independent across (¢, 5) (i.e., when teams are matched, they
play two games independently — one of them is Y;;, and the other is Y};). The goal is again to recover
Y* € [0,1]"*™ given the observation Y. The important difference between this example and Example 2 is
that Y™ here is not exactly low rank.

Estimator: we still set Y equal to the best rank-r approximation of %Y, as in Eq. (5). The following Claim
can guide us in setting the target rank 7:

Claim 1. The matriz Y* is approzimately low-rank with r = \/pn, i.e., there exists Z with rank(Z) < r

such that ) )
1Z-Y*p <%
<

2 v, ®)

Let ||-||, denote the nuclear/trace norm of a matrix (i.e., the sum of its singular values). Since Y is the
closest rank-r approximation to %Y, we can show that
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where the penultimate inequality follows by adding and subtracting Y* in the inner product, and the last
inequality is the trace Holder inequality + Cauchy-Schwarz inequality. Since the matrix Y — Y™* has rank at
most 27, we have that

IV =2z, < var

V-2, = 2=l s vF |y -y

+HIY* =2l g
P

[9)

From Lemma 1, we can readily bound the first term, while the second term is upper bounded by % using
Claim 1 above. Now, we rewrite

2n rnlogn

Vr p

IV =Y <12 =Yl + IV = 2]

Plugging in r = \/pn and dividing by n? yields the error bound
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In particular, the error goes to zero when p = w (bng) .



Proof of Claim 1. Let us introduce some notation. Define

7}::{2’

and let k(¢) := first element in Ty, which we will treat as the “representative” element. For all ¢ € Ty, define
the i*" row of our candidate low-rank matrix Z as

= [W_DM)} (=1,...,r

r r

Zi# = Yk*(E),:

which is a “discretization” of the rows of Y*. Then Z € [0,1]"*™ has at most r distinct rows, and rank(Z) < r.
Moreover, for each i € Ty:

e if team ¢ is better than team k(£), we can write
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where () is due to the fact that each element in the sum is in [0,1] and (f) is due to the fact that
Y5 > Y}, if team i beats team k(¢). The last inequality, (4), is due to the fact that the difference
between row sums of elements in 7; is upper bounded by the width of that interval, .

e if k(¢) beats team 4, then the same argument applies leading to the difference Sy ;) — S; which is also
upper bounded by .

Combining, we obtain

. n n . n ’,’L
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