A Statistical Perspective on Discovering Functional
Dependencies in Noisy Data

Yunjia Zhang, Zhihan Guo, Theodoros Rekatsinas
UW-Madison

ABSTRACT

We study the problem of discovering functional dependencies
(FD) from a noisy data set. We adopt a statistical perspective
and draw connections between FD discovery and structure
learning in probabilistic graphical models. We show that
discovering FDs from a noisy data set is equivalent to learn-
ing the structure of a model over binary random variables,
where each random variable corresponds to a functional of
the data set attributes. We build upon this observation to
introduce FDX a conceptually simple framework in which
learning functional dependencies corresponds to solving a
sparse regression problem. We show that FDX can recover
true functional dependencies across a diverse array of real-
world and synthetic data sets, even in the presence of noisy
or missing data. We find that FDX scales to large data in-
stances with millions of tuples and hundreds of attributes
while it yields an average F; improvement of 2X against
state-of-the-art FD discovery methods.

KEYWORDS

Functional Dependencies, Sparse Regression, Structure Learn-
ing, Robust Covariance Estimation

1 INTRODUCTION

Functional dependencies (FDs) are an integral part of data
management. They are used in database normalization to
reduce data redundancy and improve data integrity [15], and
are critical for query optimization [20, 26, 28]. FDs are also
helpful in data preparation tasks, such as data profiling and
data cleaning [9, 40], and can also help guide feature engi-
neering in machine learning pipelines [16]. Unfortunately,
FDs are typically unknown and significant effort and domain
expertise are required to identify them.

Many works have focused on automating FD discovery.
Given a data instance, works from the database commu-
nity [19, 25, 33] aim to enumerate all constraints that syn-
tactically correspond to FDs and are not violated in the
input data set (or are violated with some tolerance to ac-
commodate for noisy data). On the other hand, data mining
works [30, 31, 39] propose using information theoretic mea-
sures to identify FDs. Unfortunately, both approaches are
limited either because they discover spurious constraints or
because they do not scale to data sets with many attributes
(see Section 5). The reason is that existing methods are by

design prone to discover complex constraints, a behavior
that can be formally explained if one views FD discovery
via an information theoretic lens (see Section 2). The main
problem is that existing solutions are not designed to discover a
parsimonious collection of FDs which is interpretable and can
be readily used in downstream applications. To address this
problem, we adopt a statistical perspective of FD discovery
and propose an FD discovery solution that is scalable, its
output is interpretable without any tedious fine tuning, and
can be used to optimize data preparation pipelines.

Challenges. Inferring FDs from data observations poses
many challenges. First, to discover FDs one needs to iden-
tify an appropriate order of the attributes that captures the
directionality of functional dependencies in a data set. This
leads to a computational complexity that is exponential in
the number of attributes in a data set. To address the expo-
nential complexity of FD discovery, existing methods rely
on pruning methods to search over the lattice of attribute
combinations. Pruning can either impose constraints on the
number of attributes that participate in a constraint or can
leverage more involved information theoretic measures to
filter constraints [25, 30]. Despite the use of pruning many
of the existing methods are shown to exhibit poor scalability
as the number of columns increases [25, 30].

Second, FDs capture deterministic relations between at-
tributes. However, in real-world data sets missing or erro-
neous values introduce uncertainty to these relations. Noise
poses a challenge as it can lead to the discovery of spurious
FDs or to low recall with respect to the true FDs in a data
set. To deal with missing values and erroneous data, existing
FD discovery methods focus on identifying approximate FDs,
i.e., dependencies that hold for a portion a given data set. To
identify approximate FDs, existing methods either limit their
search over clean subsets of the data [34], which requires
solving the expensive problem of error detection, or employ
a combination of sampling methods assuming error models
with strong biases such as random noise [25, 35]. These meth-
ods can be robust to noisy data. However, their performance,
in terms of runtime and accuracy, is sensitive to factors such
as sample sizes, prior assumptions on error rates, and the
amount of records available in the input data set. This makes
these methods cumbersome to tune and apply to heteroge-
neous data sets with varying number of attributes, records,
and errors.

Finally, most dependency measures used in FD discov-
ery, such as co-occurrence counts [25] or criteria based on
mutual information [5] promote complex dependency struc-
tures [30]. The use of such measures leads to the discovery of
spurious FDs in which the determinant set contains a large
number of attributes. As we discuss later in our paper, this
overfitting behavior stems directly by the use of measures
such as entropy to measure dependencies across columns.
Discovering large sets of FDs makes it hard for humans
to interpret and validate the correctness of the discovered
constraints. To avoid overfitting to spurious FDs existing
methods rely on post-processing procedures to simplify the
structure of discovered FDs or ranking based solutions. The
most common approach is to identify minimal FDs [34]. An
FD X — Y is said to be minimal if no subset of X determines
Y. In many cases, this criterion is also integrated with search
over the set of possible FDs for efficient pruning of the search
space [25, 35]. Minimality can be effective, however, it does
not guarantee that the set of discovered FDs will be parsimo-
nious. As reported by Kruse et al., [25], hundreds of FDs for
data sets with only tens of attributes.

Our Contributions. We propose FDX, a framework that
relies on structure learning [24] to solve FD discovery. FDX
leverages the strong dependencies that FDs introduce among
attributes. We introduce a structured probabilistic model to
capture these dependencies, and show that discovering FDs
is equivalent to learning the structure of this model. A key
contribution in our work is to model the distribution that FDs
impose over pairs of records instead of the joint distribution
over the attribute-values of the input data set. This approach
is related to recent results on robust covariance estimation
in the presence of corrupted data [6]. A unique characteristic
of our approach to FDX discovery is that it enjoys rigor-
ous statistical guarantees on the correctness of discovered
constraints (see Section 4.2).

FDX’s model has one binary random variable for each
attribute in the input data set and expresses correlations
amongst random variables via a graph that relates random
variables in a linear way. This linear model is inspired by
standard results in the probabilistic modeling literature (see
Section 4). We leverage linear dependencies to recover the
FDs present in a data set. Given a noisy data set, FDX pro-
ceeds in two steps: First, it estimates the undirected form of
the graph that corresponds to the FD model of the input data
set. This is done by estimating the inverse covariance matrix
of the joint distribution of the random variables that corre-
spond to our FD model. Second, our FD discovery method
finds a factorization of the inverse covariance matrix that
imposes a sparse linear structure on the FD model, and thus,
allows us to obtain parsimonious FDs.

We present an extensive experimental evaluation of FDX.
First, we compare our method against state-of-the-art meth-
ods from both the database and data mining literature over
a diverse array of real-world and synthetic data sets with
varying number of attributes, domain sizes, records, and
amount of errors. We find that FDX scales to large data in-
stances with hundreds of attributes and yields an average
F; improvement in discovering true FDs of more than 2x
compared to competing methods.

We also examine the effectiveness of FDX on downstream
data preparation tasks. Specifically, we use FDX to profile
real-world data sets and demonstrate how the dependencies
that FDX discovers can (1) provide users with insights on the
performance of automated data cleaning tools on the input
data, and (2) can help users identify important features for
predictive tasks associated with the input data. FDX is al-
ready deployed in several industrial use cases related to data
profiling, including use cases in a major insurance company.

In summary, we are the first to show how to use structure
learning for principled, robust, easy-to-operationalize, and
state-of-the-art FD-discovery. A key technical contribution
of our work is to take the difference between tuple pairs for
more robust and accurate structure learning, and demon-
strate empirically that similar structure learning methods
that without the proposed pair-based transformation exhibit
poor performance. While simple in hindsight, to our knowl-
edge, this approach has not been examined in the DB or the
ML literature.

Outline. In Section 2, we discuss necessary background.
In Section 3, we formalize the problem of FD discovery and
provide an overview of FDX. In Section 4, we introduce the
probabilistic model at the core of FDX and the structure
learning method we use to infer its structure. In Section 5,
we present the experimental evaluation of FDX. Finally, in
Section 6 we discuss related work and conclude in Section 7.

2 BACKGROUND AND PRELIMINARIES

We review background material and introduce notation rel-
evant to the problem we study in this paper. The topics
discussed in this section aim to help the reader understand
fundamental limitations of prior FD discovery works and
basic concepts relevant to our proposed solution.

2.1 Functional Dependencies

We review the concept of functional dependencies and re-
lated probabilistic interpretations adopted by prior works.
We consider a data set D that follows a relational schema R.
AnFD X — Y is a statement over the set of attributes X C R
and an attribute Y € R denoting that an assignment to X
uniquely determines the value of Y [15]. We consider #;[Y]
to be the value of tuple t; € D for attribute Y ; following a

constraint-based interpretation, the FD X — Y holds iff for
all pairs of tuples t;, t; € D we have that if A 4cx ti[A] = t;[A]
then #;[Y] = ¢;[Y]. A functional dependency X — Y is mini-
mal if no subset of X determines Y in a given data set, and it
is non-trivial if Y ¢ X.

Under the above constraint-based interpretation, to dis-
cover all FDs in a data set, it suffices to discover all minimal,
non-trivial FDs. This interpretation assumes a closed-world
and aims to find all syntactically valid FDs that hold in D.
This constraint-based interpretation is adopted by several
prior works [34], and as we discussed in Section 1 leads to
the discovery of large numbers of FDs, i.e., overfitting. In ad-
dition, the interpretation of FDs as hard constraints leads to
FD discovery solutions that are not robust to noisy data [25].

To address these limitations, a probabilistic interpretation
of FDs can be adopted. Let each attribute A € R have a
domain V(A) and V(X) be the domain of a set of attributes
X ={A1,A;,...,Ar} C Rdefinedas V(X) = V(A;)XV(Az)X
-+» X V(Ag). Also, assume that every instance D of R is as-
sociated with a probability density fr(D) such that these
densities form a valid probability distribution Pg. Given the
distribution Pg, we say that an FD X — Y, with X C R and
Y € R, holds if there is a function ¢ : V(X) — V(Y) with:

1-¢€, wheny = @§(x)

Vxe V(X): PR(Y =y|X =x) = { (1)

€, otherwise
with € being a small constant.

The above condition allows an FD to hold for most tuples
allowing some violations. This equation captures the essence
of approximate FDs used in multiple works [3, 19, 20, 25, 30].
Two core approaches are adopted in these works to discover
approximate dependencies that satisfy:

(1) Use likelihood-based measures to find groups of attributes
that satisfy Equation 1 [3, 19, 20, 25]. Typically these methods
compute the approximate distribution (and likelihood) by
considering co-occurrence counts between values of (X, Y)
and normalizing those by counts of values of X [3, 20, 25].
For example, the likelihood of Equation 1 being satisfied can
be estimated by aggregating the ratios Count(x, y)/Count(x)
for all values x in a finite instance (sample) D of R [3]. A
likelihood of 1.0 means that the Equation 1 is satisfied.

(2) Rely on information theoretic measures [30] by consid-
ering the ratio F(X,Y) = % of the mutual infor-
mation H(Y) — H(Y|X) between Y and X (where H(Y|X) =
2x,y) P(X, Y)log P(Y|X) is the conditional entropy of Y given
X) and the entropy H(Y) of Y. FDs satisfy that the ratio
F(X,Y) is close to 1.0. Similar to the aforementioned ap-
proaches, these approaches require estimating the entropy
H(Y) and conditional entropy H(Y|X) from a finite instance
(sample) D of R by computing empirical co-occurrences
across assignments of X and Y.

Both above approaches have a fundamental flaw: given
a finite sample of tuples, as the number of attributes in X
increases, it more likely that the empirical ratio Pr(x|y) =
|(x,y)|/]x]| is 1.0, leading both aforementioned approaches to
determine that Equation 1 is satisfied !. This behavior leads
to overfitting to spurious dependencies and the discovery
of complex (dense) structures across attributes. Intuitively,
methods that rely on co-occurrence statistics or entropy-
based measures capture marginal dependencies across at-
tributes and not true conditional independencies as those
implied by Equation 1 [24]. For the above reason, depen-
dency discovery works that rely on the above techniques
either employ filtering-based heuristics [3, 20, 25] or propose
complex estimators [21, 30] to counteract overfitting.

2.2 Learning Parsimonious Structures

We also adopt a probabilistic interpretation of FDs but build
upon structure learning methods in probabilistic graphical
models [24] that directly discover conditional independen-
cies to alleviate the overfitting problem. Graphical models
are represented by a graph G where the nodes correspond to
random variables and the absence of edges between nodes
represent conditional independencies of variables. For exam-
ple, a collection of independent variables corresponds to a
collection of disconnected nodes, while a group of dependent
variables may correspond to a clique [24].

To avoid overfitting, we need to learn graph structures
that encode simple or low-dimensional distributions, i.e., the
graph representing conditional independencies is sparse [14].
In fact, it was recently shown that one can provably recover
the true dependency structure governing a data set by learn-
ing the sparsest possible conditional independencies that
explain the data [38]. This property motivates our objective
in this work of learning parsimonious models.

It is a well-known fact in the statistical relational learning
literature that one can learn the conditional independencies
of a structured distribution by identifying the non-zero en-
tries in the inverse inverse covariance matrix (a.k.a. precision
matrix) © = 37! of the data. This is because the conditional
dependencies amongst random variables are captured by
the non-zero off-diagonal entries of the inverse covariance
matrix © [24]. Zero off-diagonal entries in © represent con-
ditional independencies amongst random variables.

One can learn the true conditional dependencies for a
distribution by obtaining a sparse estimate of the inverse
covariance matrix © from the observed data sample [47].
Many techniques have been proposed to obtain a sparse
estimate for © [36] ranging from optimization methods [32]
to efficient regression methods [14]. We are the first to show

IFor information theoretic approaches, as P(X|Y) goes to 1.0, the condition
entropy H(Y|X) will be zero and F(X, Y) will be one.

how these methods can be used to learn FDs. In addition, we
propose an extension of these methods to enable robust FD
discovery even in the presence of noisy data.

3 THE FDX FRAMEWORK

We formalize the problem of functional dependency discov-
ery and provide an overview of FDX.

3.1 Problem Statement

We consider a relational schema R associated with a proba-
bility distribution Pg. We assume access to a noisy data set
D’ that follows schema R and is generated by the following
process: first a clean data set D is sampled from Pg and a
noisy channel model introduces noise in D to generate D’.
We assume that D and D’ have the same cells but cells in D’
may have missing values or different values than their clean
counterparts. We consider an error in D’ to correspond to
a cell ¢ for which D’(c) # D(c). We consider both incorrect
and missing values. We assume that in expectation across
all cells of the observed samples, a small fraction of cells in
the data set, less than half, are corrupted. This assumption
is necessary to recover the underlying structure of a distri-
bution in the presence of corruptions [12]. This generative
process is also considered in the database literature to model
the creation of noisy data sets [42].

Given a noisy data instance D’, our goal is to identify the
functional dependencies that characterize the distribution Pg
that from which the clean data set D was generated. Instead
of modeling the structure of distribution Pg directly, we
consider a different distribution with equivalent structure
with respect to the FDs present in Pg: For any pair of tuples
t; and t; sampled from Pg, we consider the random variable
Ii;[Y] = 1(t;[Y] = t;[Y]) where 1(-) is the indicator function,
and denote t;[X] the value assignment for attributes X in
tuple ¢;. We say that ¢;[X] = t;[X] iff A aex tilA] = t;[A] =
True. It is easy to see that an FD X — Y, with X € R and
Y € R, holds for Py, if for all pairs of tuples ;, t; in R we have
the following condition for the distribution over random
variables IIJ[Y] = l(tl[Y] = tJ[Y])

Pr(I;[Y] = 1|4[X] = tj[X]) = 1-€ (2)

where € is a small constant to ensure robustness against noise.
This condition states that the random events A 4 x(ti[A] =
ti[A]) and 1(¢;[Y] = t;[Y]) are deterministically correlated,
which is equivalent to the FD X — Y. Under this interpreta-
tion, the problem of FD discovery corresponds to learning
the structured dependencies amongst attributes of R that
satisfy the above condition.

The reason we use this model is because estimating the
inverse covariance (i.e., the dependencies) of the above distri-
bution over the tuple differences and not the structure of Pg

directly, yields FD discovery methods that are less sensitive
to errors in the raw data (see Section 4.3). Beyond robustness
to noise, this approach also enables us to identify dependen-
cies over mixed distributions that may include categorical,
numerical, or even textual data. The reason is that consider-
ing equality (or approximate equality) over attribute values
enables us to represent any input as a binary data set with
equivalent dependencies.

3.2 Solution Overview

An overview of our framework is shown in Figure 1. The
input to our framework is a noisy data set and the output of
our framework is a set of discovered FDs. The workflow of
our framework follows three steps:

Data Set Transformation. First, we use the input data
set D" and generate a collection of samples that correspond to
outcomes of the random events A 4x(ti[A] = t;[A]) = True
and t;[Y] = ¢;[Y]. The output of this process is a new data
set D, that has one attribute for each attribute in D’ but in
contrast to D’ it only contains binary values. We describe
this step in Section 4.1.

Structure Learning. The transformed data output by the
previous step corresponds to samples obtained by the model
tuple pair-based model M described in Section 3.1. That is,
data set D; contains samples from the distribution of events
NAaex(ti[A] = tj[A]) = True and t;[Y] = t;[Y]. We learn the
structure of M by obtaining a sparse estimate of its inverse
covariance matrix from the samples in D;. We describe our
structure learning method in Section 4.2.

FD generation. Finally, we use a factorization of the esti-
mated inverse covariance matrix to generate a collection of
FDs. We describe this factorization in Section 4.2. The final
output of our model is a collection of discovered FDs of the
form X — Y where X C Rand Y € R.

4 FD DISCOVERY IN FDX

We first introduce the probabilistic model that FDX uses to
represent FDs and then describe our approach for learning
its structure. Finally, we discuss how our approach compares
to a naive application of structure learning to FD discovery.

4.1 The FDX Model

FDX’s probabilistic model considers the FD interpretation de-
scribed in Equation 2 and aims to capture the distribution of
the random events A 4ox(ti[A] = t;[A]) and 1(t;[Y] = ¢;[Y]).
FDX’s model consists of random variables that model these
two random events. The edges in the model represent statis-
tical dependencies that capture the relation in Equation 2.
We have one random variable per attribute in R. For each
attribute A € R, we denote Z, € {0, 1} the random variable

Input FDX: Structure Learning for FDs

Noisy Dataset Instance

Zip
Code
L | 60608

DBAName | Address City |State

’ 835N
Foodlie | crican ay| Chicago

Harry 835N
Caray's _|Michigan Av

Chicago| IL | 60611

Grat |, 3435W

Cicago

Pierrot Ghicago

Pierrot Chicago

1. Dataset Transformation Module
- Transform the input dataset to a collection

of observations that correspond to the T

binary random variables of our FD model

2. Structure Learning Module
Mity Nice 835N - Estimate the inverse covariance matrix mu
Bar_|Michigan Av| 20| I | 60611 of our FD model using the output of L |
module one. -
- Fit a linear model by decomposing the
L | 60612 estimated inverse covariance
3493 3. FD generation
L | 60612 - Use the output of the decomposition o
3494 W from module to generate a collection 4
i L | 6012 of FDs that hold in the initial dataset

Output

Discovered FDs

Zip Code — City

Zip Code — State
DBAName — Address

Figure 1: An overview of our structure learning framework for FD discovery

that captures the distribution that any two random tuples
sampled from distribution Pg conditioning on the fact that
will have the same value for attribute A. In other words,
to construct a sample for variable Z4 we first sample two
random tuples (t;,t;) from Pgr and then Z, takes Zy4 = 1
iff t;[A] = t;[A]. We also define Z to be the random vector
containing variables Z, for all attributes in R. An instance
of Z corresponds to a binary vector capturing the equality
across attribute values between two random tuples sampled
from Pg. We now turn our attention to the dependencies over
the binary random variables in Z. For a set of attributes X let
Z[X] denote the corresponding values in vector Z. Consider
an FD X — Y. From Equation 2, we have that Pr(Z[Y] =
1Z[X]=1)=1-€.

Our goal is to learn the structure of the model described
above from samples corresponding to Z. However, the depen-
dencies across attributes in Z are V-structured (many-to-one),
which makes structure learning an NP-hard problem [7]. We
introduce two modeling assumptions to address this lim-
itation and enable using structure learning methods with
rigorous guarantees on correctness.

First, recent theoretical results in the statistical learning lit-
erature show that for linear graphical models, i.e., models that
introduce linear dependencies between random variables,
one can provably recover the correct structure from sample,
even in the presence of corrupted samples [27]. In light of
these results, we use a linear structural equation model to
approximate the dependencies across attributes of the ran-
dom vector Z. We next describe the linear model we use and
provide intuition why this approximation is reasonable.

To approximate the deterministic constraints introduced
by FDs, we build upon techniques from soft-logic [2]. Soft
logic allows continuous truth values in [0, 1] instead of dis-
crete truth values 0, 1. Also, the Boolean logic operators
are reformulated as: AA B = max{A+B-1,0}, AVB =
min{A+B,1}, A{iAA A .. Ap = £ XA and =A=1-A
Given the above, we denote Z the [0, 1]-relaxed version of

random vector Z. We also consider that an FD X — Y intro-
duces the following linear dependency:

2¥] = = 3 2] ®)

| | X;eX

across coordinates of Z. This linear dependency approxi-
mates the condition in Equation 2 using soft-logic.

Second, to obtain a parsimonious model, we consider a
global order of the random variables corresponding to the at-
tributes in Z and assume acyclic dependencies, i.e., our model
assumes a global ordering over the schema attributes and
only allows that for the relaxed condition in Equation 3 all
attributes in X pre-ceed attribute Y in that ordering. This
modeling choice is common when modeling dependencies
over structured data [38, 45, 49]. Moreover, in our experi-
mental evaluation in Section 5, we demonstrate that this
assumption does not limit the effectiveness of FDX at discov-
ering correct dependencies for real-world data even when
different heuristics are used to determine a global attribute
order (see Section 5.6.2).

Based on the aforementioned relaxed model, FDs force
the relaxed random vector Z to follow a linear structured
equation model. It is easy to see that we can use a linear
system of equations to express all linear dependencies of the
form in Equation 3 that the attributes in Z follow. We have:

Z=B"Z+e, (4)

where we assume that B is the autoregression matrix that cap-
tures the linear dependencies across attributes [27], E[e] = 0
and €; AL (ZAI, ... ,ZAj_l) for all j, where 1L denotes condi-
tional independence. Since we assume that the coordinates
in Z follow a global order, matrix B is a strictly upper trian-
gular matrix. This matrix is unknown and our goal is to infer
its non-zero entries (i.e., structure) in order to recover the
dependencies that are present in the input data set.

4.2 Structure Learning in FDX

Our structure learning algorithm follows from results in
statistical learning theory. We build upon the recent results
of Loh and Buehlmann [27] and Raskutti and Uhler [38]

Algorithm 1: FD discovery with FDX

Algorithm 2: Data Transformation

Input: A noisy relational dataset D’ following schema R.

Output: A set of FDs of the form X — Y on R.

Set D; « Transform(D’) (See Alg. 2);

Obtain an estimate © of the inverse covariance matrix (e.g.,
using Graphical Lasso) where © = UDUT with U being
upper triangular;

SetB=1-U;

Set Discovered FDs « GenerateFDs(B) (See Alg. 3);

return Discovered FDs

on learning the structure of linear structural models via
inverse covariance estimation. Given a linear model as the
one in Equation 4, it can be shown that the inverse covariance
matrix © = 27! of the model can be written as:

O=3x1=(1-B)QI-B)T (5)

where I is the identity matrix, B is the autoregression matrix
of the model, and Q = cov[e] with cov[-] denoting the co-
variance matrix. This decomposition of ® is commonly used
in learning the structure of linear models [36, 38].

FD discovery in FDX proceeds as follows: First, we trans-
form the sample data records in the input dataset D’ to sam-
ples {Z'}Y for the linear model in Equation 4 (see Algo-
rithm 2); Second, we obtain an estimate ® of the inverse
covariance matrix and factorize the estimate © to obtain an
estimate of the autoregression matrix B [38]; Third, we use
the estimated matrix B to generate FDs (see Algorithm 3).

To find the structured dependencies we need to estimate ©.
We use the following approach: Suppose we have N observa-
tions and let S be the empirical covariance matrix of these ob-
servations. It is a standard result [32] that the sparse inverse
covariance 6 corresponds to a solution to the following opti-
mization problem: mings f(0©) := —log det(®) + tr(SO) +
18|, where we replace © with its factorization ® = UDUT
with U being upper triangular. To find the solution of this
problem for our setting, we use graphical lasso [14], as it is
known to scale favorably to instances with a large number
of variables, and hence, is appropriate for supporting data
sets with a large number of attributes. Given the estimated
inverse covariance matrix © and its factorization we use the
autoregression matrix Bto generate FDs (see Algorithm 3).

We now turn our attention to how we transform the input
dataset D’ into a collection D; of observations for the linear
model of FDX (see Algorithm 2). We use the differences of
pairs of tuples in dataset D’ to generate D;.

To construct the tuple pair samples in D;, we use the
following sampling procedure instead of drawing pairs of
tuples uniformly at random: we iterate over all attributes
in the dataset order the dataset with respect to the running
attribute and perform a circular shift to construct pairs of

Input: A dataset D with n rows and k columns
Output: A dataset D; with n - k rows and k columns
A « columns [Aq, ..., Ar];
D « shuffle rows of D;
Dy « 0;
fori=1:kdo
D; « sort D by attribute A;;
D; spift < circular shift of rows in D; by 1;
forj=1:ndo
for [=1:kdo
Dyl(i=1)n+j,1] — 1 (Dilj, 1] = Di_shapel)s1);
end
end

end
return D;

Algorithm 3: FD generation

Input: An autoregression matrix B of dimensions n X m, A
schema R

Output: A collection of FDs

FDs « 0;

forj=1:mdo

Set the column vector bj < (By,j, Bz j,...,Bj-1,j) ;

X « Take the attributes in R that corresponds to non-zero
entries in bj;

Let A; be the attribute in R with coordinate j ;

if X # 0 then
| FDs « FDsU{X — A;};

end

end
return FDs

tuples. We take the union of all tuple pairs constructed in
this fashion. This heuristic allows us to increase obtain tuple
pair samples that cover a wider range of attribute values,
and hence, obtain a more representative sample D;. The
complexity of Algorithm 2 is quadratic in the number of
attributes. Our method can support diverse data types (e.g.,
categorical, real-values, text data, binary data, or mixtures
of those) as we can use a different difference operation for
each of these types.

The above structure learning procedure is guaranteed to
recover the correct structure (i.e., identify correctly the non-
zero entries) of matrix B with high probability as the number
of samples in D; goes to infinity and the number of errors
in D is limited. These guarantees follow from [32] and [38].

4.3 Discussion

Recall that FDX performs structure learning over a sample
constructed by taking the value differences over sampled

pairs of tuples from the raw data. There are two main impor-
tant benefits that this approach offers in contrast to applying
structure learning directly on the input data.

First, a standard maximum likelihood estimate of the co-
variance is very sensitive to the presence of outliers in the
data set. The reason is that sample mean is used to estimate
the covariance. However, the estimated mean can be biased
due to errors in the data set. By sampling tuple differences,
we effectively estimate the covariance of a transformed zero-
mean distribution whose covariance has the same structure
as the original distribution. By fixing the mean to zero, covari-
ance estimation is less sensitive to errors in the raw data. This
approach is rooted in robust statistics [6, 12]. We validate
this experimentally in Section 5 where we show that FDX is
more robust than standard Graphical Lasso.

Second, structure learning for FDX’s model enjoys bet-
ter sample complexity than structure learning on the raw
data set. We focus on the case of discrete random variables
to explain this argument. Let k be the size of the domain
of the variables. The sample complexity of state-of-the-art
structure learning algorithms is proportional to k* [47]. Our
model restricts the domain of the random variables to be
k = 2. At the same time, our transformation allows access to
an increased amount of training data. Hence, our approach
performs better than naive structure learning or other FD
discovery methods when the sample size is small. We demon-
strate this experimentally in Section 5.

5 EXPERIMENTS

We compare our approach against several FD discovery meth-
ods on different data sets. The main points we seek to validate
are: (1) does structure learning enables us to discovery FDs
accurately (i.e,. high-prevision and high-recall) in a scalable
manner, (2) what is the impact of different data characteris-
tics on different FD discovery methods, (3) how robust FDX
is to different tunable parameter settings, and (4) can we use
the output of FDX to optimize downstream data prepara-
tion and data analytics pipelines. We also present synthetic
micro-benchmarks to evaluate the robustness of FDX.

5.1 Experimental Setup

Methods. We consider four methods: (1) PYRO [25], a
state-of-the-art FD discovery method in the database com-
munity that seeks to find all syntactically valid FDs in a data
set. The code is released by the authors 2. The scalability of
the algorithm is controlled via an error rate hyper-parameter.
(2) Reliable Fraction of Information (RFI) [30], the state-of-
the-art FD discovery approach in Data Mining. RFI relies
on an information theoretic score to find FDs and uses an

Zhttps://github.com/HPI-Information-Systems/pyro/releases

Table 1: A summary of the benchmark data sets with
known dependencies we use in our experiments.

Data set Attributes #FDs # Edges in FDs
Alarm 37 24 45
Asia 8 6 8
Cancer 5 3 4
Child 20 15 20
Earthquake 5 3 8

approximation scheme to optimize performance. The ap-
proximation ratio is controlled by a hyper-parameter . We
evaluate RFI for a € {0.3,0.5, 1} where 1.0 corresponds to
no approximation. The code is also released by the authors 3.
RFI discovers FDs for one attribute at a time and return a list
of FDs in descending order with respect to RFI’s score. For
RFI, we keep the top-1 FD per attribute to obtain a parsimo-
nious model and optimize its accuracy. To discover all FDs
in a data set, we run the provided method once per attribute.
(3) Graphical Lasso (GL), a structure learning algorithm for
finding undirected structured dependences [47]. To find FDs,
we perform a local graph search to find high-scored—we use
the same score as RFI—directed structures. (4) TANE [19], an-
other FD discovery algorithm that supports approximate FDs.
The code is released by the authors *. To get approximate
FDs on a noisy dataset, TANE uses a hyper-parameter that
captures how much noise is expected; this parameter is left
to its default setting if not specified in our experiments. (5)
CORDS [20], a method to discover soft FDs and correlations.
CORDS is using correlation-related statistics to identify FD
dependencies between each pair of attributes. This baseline
is a best-effort implementation of CORDS since the code is
not available. All hyper-parameters are set according to [20].

Metrics. To account for partial discovery of FDs , we use
Precision (P) defined as the fraction of correctly discovered
edges that participate in true FDs by the total number of
edges in discovered FDs; Recall (R) defined as the fraction of
correctly discovered edges that participate in true FDs by the
total number of true edges in the FDs of a data set; and F; is
defined as 2PR/(P + R). For the synthetic data we consider
five instances per setting. To ensure that we maintain the
coupling amongst Precision, Recall, and F;, we report the
median performance. For all methods, we fine-tuned their
hyper-parameters to optimize performance. In the case of
PYRO we consulted the authors for this process. We also
measure the end-to-end runtime for each method.

Shttp://eda.mmeci.uni-saarland.de/prj/dora/
4 https://www.cs.helsinki.fi/research/fdk/datamining/tane/

Table 2: The different settings we consider for syn-
thetic data sets. We use the description in parenthesis
to denote each of these settings in our experiments.

Property Settings

1% (Low), 30% (High)

Tuples (t) 1,000 (Small), 100,000 (Large)
Attributes (r) 8-16 (Small), 40-80 (Large)
Domain Cardinality (d) 64-216 (Small), 1,000-1,728 (Large)

Noise Rate (n)

Evaluation Goals and Data Sets. First, we examine how
accurately the different methods identify true functional de-
pendencies in a data set. We consider functional dependen-
cies that exist in the generating distribution of a data set
and use data sets with known functional dependencies. We
use benchmark data generation programs that correspond to
structured probabilistic models with functional dependen-
cies (i.e., networks that exhibit deterministic dependencies).
All data generators are obtained from a standard R package
for Bayesian Networks® and are evaluated with their default
settings. A summary of these data sets is shown in Table 1.

Second, we evaluate the above methods as we vary four
key factors in the data: (1) Noise Rate (denoted by n). It
stresses the robustness of FD discovery methods; (2) Number
of Tuples (denoted by #). It affects the sample size available to
the FD discovery methods; (3) Number of Attributes (denoted
by r); It stresses the scalability of FD discovery methods; (4)
Domain Cardinality (denoted by d) of the left-hand side X
for an FD; It evaluates the sample complexity of FD methods.
We consider 24 different setting combinations for these four
dimensions (summarized in Table 2). For each setting we
use a mixture of FDs X — Y for which the cardinality of X
ranges from one to three. We provide details on the synthetic
data generation at the end of this section.

Finally, we evaluate the FD discovery methods on real-
world data with naturally occurring errors that correspond
to missing entries. For these data sets, we do not have access
to the true FDs. We present a qualitative analysis of the
discovered FDs as well as measurements on the runtime and
the number of constraints discovered by each method. The
data sets we use are benchmark data sets used to evaluate
data cleaning and predictive analytics solutions®. Given this
type of usage, we use these data sets to evaluate if FDX can
help provide insights can (1) provide users with insights
on the performance of automated data cleaning tools on
the input data, and (2) can help users identify important
features for predictive tasks associated with the input data.
A summary of these data sets is provided in Table 3.

Shttp://www.bnlearn.com/bnrepository/
%Many of the data sets are from the UCI repository; Hospital is from [40]
and NYPD is the crime data set from the data portal of the city of New York.

Table 3: Real-world data sets for our experiments.

Data set Tuples Attributes
Australian 690 15
Hospital 1,000 17
Mammographic 830 6
NYPD 34,382 17
Thoraric 470 17
Tic-Tac-Toe 958 10

Synthetic Data Generation. We discuss our synthetic
data generation process for completeness. The reader may
safely continue with the next section. We follow the next
process: Given a schema with r attributes our generator
first assigns a global order to these attributes and splits the
ordered attributes in consecutive attribute sets, whose size
is between two and four (so that we obey the cardinality of
the FD as we discussed above). Let (X, Y) be the attributes
in such a split. Our generator samples a value v from the
range associated with the setting for Domain Cardinality
and assigns a domain to each attribute in X such that the
cartesian product of the attribute values corresponds to that
value. It also assigns the domain size of Y to be v.

We introduce FD dependencies as well as correlations in
the splits obtained by the above process. For half of the (X,
Y) groups generated via the above process, we introduce FD-
based dependencies that satisfy the property in Equation 1.
We do so by assigning each value I € dom(X) to a value
ro € dom(Y) uniformly at random and generating ¢ samples,
where t is the value for the Tuples parameter. For the re-
mainder of those groups we force the following conditional
probability distribution: We assign each value I € dom(X)
to a value ry € dom(Y). Then we generate t samples with
P(Y=ry|X=10)=pand P(Y # ro | X =) = gty
Here, p is a hyper-parameter that is sampled uniformly at
random from [0, 0.85]. This process allows us to mix FDs
with other correlations, and hence, evaluate the ability of FD
discovery mechanisms to differentiate between true FDs and
strong correlations. Finally, to test how robust FD discovery
algorithms are to noise, we randomly flip cells that corre-
spond to attributes that participate in true FDs to a different
value from their domain. The percentage of flipped cells is
controlled by the Noise Rate setting.

5.2 Experiments on Known-Structure Data

We evaluate the performance of our approach and competing
approaches on identifying FDs errors in all data sets with
known structure. Table 4 summarizes the precision, recall,
and F1-score obtained by different methods, and Table 5
summarizes their runtimes. For these data sets, we do not

http://www.bnlearn.com/bnrepository/

Table 4: Evaluation on benchmark data sets with
known functional dependencies.

Dataset | | FDX GL |PYRO TANE CORDS RFI(.3) RFI(5) RFI(1.0)
P 0839 0.123] - - 0.236 - - -
Alarm R | 0578 0867 - - 0.778 - - -
F,|0.684 0215 - - 0.363 - - -
Asia P [1.000 0316 0.235 1.000 0429 0500 0.462 0.462
R | 0500 0.750 | 0.500 0.125 0.750 0.750 0.750 0.750
F, |0.667 0.444| 0320 0.222 0545 0.600 0.571 0.571
Cancer | | 1000 0375[71000 0000 0000 0571 0571 0571
R | 0.750 0.750 | 0.750 0.000 0.000 1.000 1.000 1.000
F; | 0.857 0500 | 0.857 0.000 0.000 0.727 0727 0.727
Child P [1.000 0359 0.105 0.167 0.202 - E -
R | 0.450 0.700 | 1.000 0.400 0.900 - - -
F; |0.667 0.475| 0.190 0.235 0.330 - - -
Farthquake P [1.000 0.800| 0.600 0.000 0.500 0.571 0.571 0.571
R | 1.000 1.000| 0.750 0.000 0.750 1.000 1.000 1.000
F; | 1.000 0.889| 0.667 0.000 0.600 0.727 0.727 0.727

’-> method exceeds runtime limit (8 hours).

Table 5: Runtime (in seconds) of FD methods on bench-
mark data sets with known functional dependencies.

Data set ‘ FDX GL ‘ PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1.0)
Alarm 2.468 2.827 - - 0.330 - - -
Asia 0.388 0.213 | 1.598 0.090 0.056 13.009 15.231 15.336
Cancer 0.301 0.256 | 1.913 0.063 0.047 8.105 7.762 7.762
Child 1.128 0.468 | 217.748 0.160 0.169 - - -
Earthquake | 0.366 0.181 | 3.337 0.051 0.065 7.038 7.767 6.601

’-> method exceeds runtime limit (8 hours).

introduce noise given the inherent randomness of the data
generation process.

As Table 4 shows, FDX consistently outperforms all other
methods. In many cases, like Alarm, Asia, Child and Earth-
quake, we see improvements of 11 to 47 F1 points. We see
that for data sets with few attributes and a small number of
FDs (i.e., Asia, Cancer, and Earthquake) FDX achieves both
high recall and high precision in all data sets despite the
different distributional properties of each data set. For larger
data sets (i.e., Alarm and Child), we see that FDX maintains
its high precision but its recall drops. Nonetheless, FDX has
a 47 points higher F;-score than competing methods on the
largest data set Alarm and is tied for the first place with
PYRO on the second largest data set Cancer. In fact, TANE
and RFI seem to be unable to obtain meaningful results for
these cases. This performance is explained by the fact that
FDX can be conservative in discovering FDs as it aims to
learn a parsimonious dependency model. At the same time,
Table 5 shows that FDX requires only a couple of seconds
for the largest data set while it achieves relatively low run
time for smaller data sets. The above results validate that
FDX can identify true FDs effectively and efficiently.

We discuss the performance of individual competing meth-
ods. We start with PYRO. Recall that this method, finds all
syntactically valid FDs in a data sample. Due to its design, we
expect the recall of PYRO to be high but its precision limited.

We see this behavior in the results shown in Table 4. We see
that PYRO’s recall is consistently higher than its precision,
but in many cases the recall is not perfect. This is because
PYRO is not as robust as other methods to noisy data.

We then focus on TANE. For most data sets, F;-scores of
TANE are consistently low in both recall and precision. We
can see that for Cancer and Earthquake, no FDs are discov-
ered by TANE. This is because TANE is finding equivalent
row partitions which makes TANE not robust to noise. For
CORDS, although run time is consistently low, we observe
that it has unstable precision, recall and F;-score. That is
because CORDS only measures marginal dependencies and
not conditional independence dependencies.

We turn our attention to RFI. RFI optimizes an information
theoretic score to identify FDs. First, we find that RFI is
significantly slower than all other methods (see Table 5) and
it cannot terminate for data sets with many attributes. This
performance is far from practical. For the data sets that it
terminates we see that its F;-score is better than PYRO but 10
to 28 points lower than FDX, with the precision of RFI being
low. We attribute this performance to the RFI’s score that
tend to overfit the input sample and is not robust to noisy
data. Finally, we do not observe quality differences as we
vary the number of the approximation parameter. We also
see that RFI is slower than FDX and its runtime increases
dramatically for data sets with many attributes (to the extent
that for Alarm it cannot terminate within eight hours).

Finally as for graphical lasso (GL), we see that it performs
reasonably well in all data sets both with respect to F;-score
and runtime. However, we see that its precision is worse than
FDX. This performance gap is due to the fact that unlike FDX,
GL uses a non-robust covariance estimate.

Takeaway: The combination of structure learning methods
with robust statistics is key to discovering true FDs in an
effective and efficient manner.

5.3 Experiments with Synthetic Data

We perform a detailed evaluation of all FD discovery methods
as we vary different key factors of the input data. To this end,
we use the synthetic data described in Section 5.1. These data
sets have varying characteristics summarized in Table 2.
Figure 2 shows the F1-score on four pairs of the synthetic
data sets that we generate. Figure 2a, 2c, 2e and 2g show the
results on high noise rate data sets, while Figure 2b, 2d, 2f
and 2h show the results on low noise rate ones. We change
the number of attributes r, number of tuples t and domain
size d from large to small respectively. As shown, our FDX
consistently outperforms all other baseline methods in terms
of Fj-score in all settings. More importantly, we find out
that our FDX is less affected by number of attributes and
number of tuples compared with other baseline FD discovery

t=large r=large d=large n=high t=large r=large d=large n=low

070939

0514

0.4 0336 Zo4

Fl-score

0276
0.207
02 0.148 02
0022 0021 .
0.0 0.0
FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1) FDX

(@

t=large r=small d=large n=high

GL PYRO TANE CORDSRFI(.3) RFI(.5) RFI(1)

(b)

t=large r=small d=large n=low

02 0163 0.163 0.2 0163 0.163

GL PYRO TANE CORDSRFI(.3) RFI(.5) RFI(1)

(d)

t=small r=small d=large n=low

FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1) FDX

©

t=small r=small d=large n=high

0.667 0.667 0.667 0.667 0.667 0.667
06 2 0. 0571

0.0901 0.114 0114
0.0
FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1) FDX

(e)

t=small r=small d=small n=high

0114 0.114

GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1)

()

t=small r=small d=small n=low

FDX GL PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1) FDX

(2

GL PYRO TANE CORDSRFI(.3) RFI(.5) RFI(1)

Figure 2: F,-score of different methods on different
synthetic settings

methods. In detail, we find that FDX maintains good F;-
score for data sets with low amount of noises (< 1%) with an
average of F;-score of 0.823. For data sets with high noise
rate, FDX still yields better results than competing methods.

To optimize performance of PYRO and TANE, we set their
error rate hyper-parameter to the noise level for each data
set. For the data set with large number of attributes r, TANE
does not terminate. We observe that PYRO and TANE tend to
generate near-complete FD graphs rather than sparse ones
on synthetic data sets, which makes both PYRO and TANE
have high recall, low precision, and low F;-score. This be-
havior is compatible with their performance in our previous
experiments with benchmark data.

As before we find that RFI exhibits poor scalability and in
many cases it fails to terminate within 8 hours. When RFI
terminates (shown in Figure 2e, 2f, 2g and 2h), we find that
it exhibits good F;-scores but still lower compared to FDX.
We further investigated the performance of RFI for partial
executions. Recall that due to the implementation of RFIL, we

10

have to run it for each attribute separately. We evaluated
RFI’s accuracy for each of the attributes processed within
the 8-hour time window. Our findings are consistent with
the aforementioned observation. The precision of RFI is high
but its recall is lower than FDX.

Turning our attention to CORDS, we see again that its
performance can vary significantly. For small instances, such
as the instances in Figures 2 (g) and (h), we see that CORDS
recovers the same dependencies as RFI (the entropy-based
method) but for large instances, such as in Figures 2 (e) and
(), using the correlations to find FDs leads to overfitting
and poor performance. This is because a small number of
coordinates naturally limits the effect of overfitting to com-
plex dependencies. This is why we see RFI’s bias correcting
estimator obtaining higher F;-scores.

Finally, we see that the high sample complexity of struc-

ture learning on the raw input (see Section 4.3) leads to GL
exhibiting low accuracy. This becomes more clear, if we com-
pare the performance of GL with a large number of tuples to
that with a small number of tuples while keeping other vari-
ables constant. We can see a consistent drop of performance
when the data sample becomes limited.
Takeaway: Our evaluation on synthetic data verifies that
the data transformation introduced in Section 4.1 enables
FDX to be more robust to noisy data and allows for lower
sample complexity. As a result, FDX can discovery FDs more
accurately in the presence of noisy data. Furthermore, we
find information theoretic measures exhibit higher sample
complexity that pure statistical measures. This phenomenon
is evident from the performance of RFIL.

5.4 Experiments on Real-World Data

We evaluate different FD discovery methods against real-
world data sets with naturally occurring errors that corre-
spond to missing values.For our analysis, we use the data
sets summarized in Table 3. As we discussed in Section 5.1,
the true FDs are unknown for these data sets, and thus, we
measure the runtime as well as the number of constraints
discovered by each of the methods. Moreover, we manually
inspect the constraints discovered by different methods and
present a qualitative analysis.

Table 6 shows the runtime (in seconds) and the number of
FDs discovered by each method. We first focus on runtime.
As shown FDX, PYRO and TANE can scale to real-world
noisy data instances with many attributes (e.g., NYPD). We
see that for most data sets FDX terminates within a couple
of seconds. The only exception is NYPD where FDX requires
~ 400 seconds to terminate. This runtime is due to the data
transformation introduced by Algorithm 2 that requires per-
forming a self-join. Sampling methods can be used to further
speed up this computation. We see that PYRO and TANE

Table 6: Runtime (in seconds) and number of discov-
ered FDs over real-world data sets with naturally oc-
curring missing values.

Data set ‘ ‘ FDX GL |[PYRO TANE CORDS RFI(.3) RFI(.5) RFI(1.0)
Australian time (sec)| 0.38 0.46/10.44 0.12 0.07 621.59 985.93 2581.45
of FDs 4 14 | 1711 224 26 15 15 15
Hospital time (sec)| 1.75 0.59| 2.65 0.16 0.13 6456.60 6603.16 6479.34
#of FDs | 10 16 | 434 655 39 16 16 16
Mammographic time (sec)| 0.24 0.18| 1.47 0.07 0.04 4.73 5.52 5.02
of FDs 3 5 9 8 6 6 6 6
time (sec) [447.48 1.43] 549 396 0.84 - - -
NYPD #of FDs | 16 18 | 226 183 7 - - -
Thoracic time (sec)| 0.61 0.40| 7.97 0.130 0.11 1938.56 3767.17 5528.76
#of FDs | 10 15 | 1066 53 13 17 17 17
Tic-Tac-Toe time (sec)| 1.02 0.28| 9.04 0.10 0.09 39.99 59.57 7048
of FDs 9 9 | 1168 98 18 10 10 10

s

-’ method exceeds runtime limit (8 hours).

are also very efficient with most runtimes being below ten
seconds. On the other hand, RFI has significant scalability
issues when a data set has a large number of attributes. This
performance makes RFI rather impractical for deployment
in data pipelines.

We focus on the FDs discovered by the different methods.
We see that FDX, GL, RFI, and CORDS always find a number
of FDs that is at most equal to the number of attributes in
the input data set. This behavior is expected as all these
models are tailored towards finding a parsimonious set of
FDs and for each attribute consider at most one FD that has
this attribute as the determined attribute (i.e., on the right
side). On the other hand, PYRO and TANE find hundreds of
FDs for most data sets, as they find all syntactic FDs that hold
in a given instance. Finally, we see that GL finds a similar
number of constraints with FDX but there are cases where
it discovers more constraints. This result is consistent with
the behavior we observed in our previous experiments, i.e.,
that FDX is more conservative at reporting constraints. This
behavior is desired in cases where a limited number of false
positives is required. All these results are consistent with
the FD interpretation adopted by each system. Based on
these results, we argue that PYRO, TANE and RFI can be
impractical in many cases.

We turn our attention to the quality of the FDs discov-
ered by the competing approaches. We focus on the Hos-
pital data set as it is easy to detect FDs via manual inspec-
tion. We consider the FDs discovered by FDX. A heatmap
of the autoregression matrix of FDX’s model and the cor-
responding FDs are shown in Figure 3. We find that the
discovered FDs are meaningful. For example, we see that
attributes ‘Provider Number’ and ‘Hospital Name’ determine
most other attributes. We also see that ‘Address’ determines
location-related attributes such as ‘City’. We also find that at-
tribute ‘Measure Code’ determines ‘Measure Name’ and that

11

050 ProviderNunber -> ZipCode
ProviderNunber -> HospitalName
ProviderNunber,HospitalName -> Addressl

ProviderNunber, HospitalName,Address1 -> City

City -> CountyName

ProviderNunber ,HospitalName,Address1 -> PhoneNumber

PhoneNurber -> HospitalOwner
MeasureCode -> MeasureName

015 MeasureCode , MeasureNane -> Stateavg

MeasureCode ,MeasureName, Stateavg -> Condition

Figure 3: The autoregression matrix estimated by FDX
for Hospital data set and the corresponding FDs.

HospitalName -> ZipCode (0.6884822119510943)
-> HospitalOwner (0.7905101603249726)
-> Addressl (0.6841490007985284)
-> State (0.33850259042851694)
-> Stateavg (0.7599899758330434)
-> PhoneNumber (0.68061335585621)
Condition, MeasureName -> HospitalType (0.09808823042059128)
City -> CountyName (0.7179703815912811)
MeasureName -> MeasureCode (0.7884481625257015)
-> Score (0.2005127949958685)
-> Condition (0.7896626996070244)
-> ProviderNumber (0.6864891049294678)
-> HospitalName (0.6896265931948304)
-> MeasureName (0.7811219784869881)
HospitalName -> City (0.6928075192148113)
ZipCode -> EmergencyService (0.661887418552853)

HospitalName
HospitalName

PhoneNumber
MeasureCode
HospitalName

Sample
MeasureCode
HospitalName
ProviderNumber
MeasureCode

Figure 4: The FDs discovered by RFI for Hospital.

they both determine ‘StateAvg’. In fact, there is an one-to-
one mapping between ‘MeasureCode’” and ‘MeasureName’
while ‘StateAvg’ corresponds to the concatenation of the
‘State’ and ‘Measure Code’ attributes. The reader may won-
der why the ‘State’ attribute is found to be independent of
every other attribute. The reason is that hospital data set
only contains two states with one appearing nearly 89% of
time. Enforcing a sparse structure, FDX weakens the role
of ‘State’ in deterministic relations. These results show that
FDX can identify meaningful FDs in real-world data sets. We
provide additional evidence in Section 5.5.

We now consider the constraints discovered by RFI. The
results are consistent across all three alphas, so we pick
the one with highest alpha (lower approximate rate). RFI
outputs 16 FDs that are shown in Figure 4. The value in the
parenthesis is the reliable fraction of information, the score
proposed by RFI to select approximate FDs. After eliminating
FDs with low score, we find that most of FDs discovered by
RFI are also meaningful. However, it has the problem of
overfitting to the data set. Specifically, for the FD ‘ZipCode’
— ‘EmergencyService’, this relation holds for the given data
set instance, but does not convey any real-world meaning.
We attribute this behavior to the fact that the domain of

Table 7: The F; score of AimNet and XGBoost for
missing data imputation with random and systematic
noise. We report the median accuracy for attributes
that FDX identifies that participate in an FD (denoted
by w) and attributes for which FDX identifies that do
not participate in any FD (denoted by w/o0).

Random Systematic
Noise Noise

Data set AimNet XGBoost AimNet XGBoost

w/o w ‘w/o w ‘w/o w ‘w/o w
Australian |0.41 0.86/0.34 0.86|0.42 0.96/0.34 0.96
Hospital 0.58 1.0 (0.57 0.97|0.38 1.0 |0.53 0.99
Mammogr. [0.63 0.84[0.54 0.73|0.44 0.73|0.42 0.68
NYPD 0.89 0.93/0.92 0.94|0.75 0.76|0.86 0.90
Thoracic 0.77 0.82(0.76 0.83|0.74 0.91|0.61 0.91
Tic-Tac-Toe| 0.6 0.56|0.52 0.55|0.48 0.47|0.57 0.50

‘“ZipCode’ is really large while ‘Emergency Service’ only has
a binary domain. This makes it more likely to observe a
spurious FD when the number of data samples is limited.
This finding matches RFI’s performance for the synthetic
data sets. For PYRO and TANE, we find that they discover
hundreds of FDs, and hence, it is hard for a human to analyze.
For instance, PYRO finds 24 FDs that determine ‘Address1’.
Takeaway: We find that FDX can help users identify mean-
ingful dependencies in real-world data with naturally oc-
curring errors that correspond to missing values. Alterna-
tive approaches either do not scale to data sets with a large
number of attributes or output an overwhelming number of
constraints. The latter requires tedious inspection and fine-
tuning by users to be valuable for downstream applications.
In contrast to all prior approaches, structure learning offers a
viable and practical solution to the problem of FD discovery.

5.5 Using FDX in Data Preparation

Summary. We examine if FDX’s output can be useful for
data profiling in data preparation pipelines. We consider two
data preparation tasks: (1) automated data cleaning, and (2)
feature engineering. For data cleaning, we demonstrate that
FDX can help predict if automated data cleaning will be effec-
tive, and for feature engineering we demonstrate that FDX
can help identify important features for downstream predictive
tasks without training any machine learning models.

Results. We consider the data sets summarized in Table 3
and present the experiments we conduct for each of the
aforementioned data preparation tasks as well as our find-
ings. We consider the task of missing data imputation and
two ML-based solutions to it: (1) AimNet, a new imputation
method that relies on neural attention models to capture
dependencies over the attributes of a data set [46], and (2)
XGBoost (a method to shown to be very effective in [46]).

12

We build upon recent works that observe that in the pres-
ence of strong structured dependencies automated data clean-
ing can be effective [17, 40] and perform the following exper-
iment: For each data set in Table 3, we separate its attributes
into two groups (1) attributes that participate in an FD based
on FDX’s output, and (2) attributes that are independent
according to FDX. We measure the median imputation accu-
racy for each group for AimNet and XGBoost and examine
if the constraints discovered by FDX can be used as a proxy to
identify if automated cleaning will be accurate.

The results are summarized in Table 7. We see that in
most cases, the accuracy of data imputation is higher when
the target attribute participates in a dependency identified
by FDX. This pattern holds for both AimNet and XGBoost,
which provides evidence that FDX can be used as an effective
data profiling mechanism regardless of the model used for
data cleaning. In fact, FDX is already being used in industrial
use cases as a profiling tool in data preparation pipelines.

For feature engineering, we focus on the Australian Credit
Approval and the Mammography data sets. For Australian,
the attributes are anonymized and the target attribute is A15.
For Mammography, the target attribute is ‘severity’. Figure 5
shows the autoregressive matrices recovered by FDX. As de-
picted, for Australian FDX finds that attribute A8 determines
the target attribute A15. After investigating the literature
we find reports [37] which state that indeed A8 is the most
informative feature for the corresponding prediction task. In
fact, this report evaluates several feature-ranking methods
that all rank A8 as the most important feature for this task.
For Mammography, FDX finds that the mass ‘margin’ and
‘shape’ determine the ‘severity’ of a mass (i.e., the target
attribute) and that ‘severity’ determines the BI-RADS assess-
ment (attribute ‘rads’). We find publications in the medical
domain [48] as well as a textbook in cancer medicine [18]
which state that “the most significant features that indicate
whether a mass is benign or malignant are its shape and mar-
gins”, a fact that is indeed recovered by FDX. Moreover, the
publication associated with this data set [29] explains that
the BI-RADS assessment records the assessment of medical
doctors and is predictive of malignancy. Notice that FDX
finds the correct directionality between the severity of a
mass and the BI-RADS assessment.

5.6 Hyper-parameter Analysis

We examine FDX’s robustness against different hyperpa-
rameter settings. We report results for: (1) different sparsity
settings, and (2) different column ordering methods.

5.6.1 Sparsity Setting. We present the results of FDX on
known-structure benchmark data set with different sparsity
settings. As we see in Table 8, there is a constant drop on

Autoregression Matrix Autoregression Matrix

Ns s M3 AL N M A MR R A
-

s A4 M2 A0
e s

MR OR M S A6 A AL A3 A AS A0 A2 AW R Gnsty merin shape severty s e

(A) Australian Credit Approval;
A15 is the goal attribute

(B) Mammography;
Severity is the goal attribute

Figure 5: The autoregression matrix estimated by FDX
for Australian Credit Approval and Mammography.

Table 8: Evaluation on benchmark data sets with dif-
ferent sparsity setting for FDX.

Data set | | 0 |.002 .004 .006 .008 .010

Precision|0.839(0.723 0.694 0.640 0.627 0.632
Recall |0.578(0.756 0.755 0.711 0.711 0.689
F;-score |0.684(0.739 0.723 0.673 0.667 0.659
#of FDs| 31 | 30 30 30 30 28
Precision|1.000(0.714 0.667 0.667 0.667 0.800
Recall [0.500(0.625 0.500 0.500 0.500 0.500
F;-score |0.667|0.444 0.571 0.571 0.571 0.615
#of FDs | 7 6 5 5 5 4
Precision|1.000(1.000 0.000 0.000 0.000 0.000
Recall [0.750{0.250 0.000 0.000 0.000 0.000
F;-score |0.857(0.400 0.000 0.000 0.000 0.000
#of FDs | 3 1 0 0 0 0
Precision|1.000(0.778 0.696 0.727 0.696 0.714
Recall |0.450(0.700 0.800 0.800 0.800 0.75
F;-score |0.667(0.737 0.744 0.762 0.744 0.732
#of FDs | 14 | 18 17 17 17 15
Precision|1.000(1.000 1.000 1.000 1.000 1.000
Recall [1.000{0.750 0.750 0.750 0.750 0.750
F;-score |1.000{0.857 0.857 0.857 0.857 0.857
#of FDs | 4 3 3 3 3 3

’-> method exceeds runtime limit (8 hours).

Alarm

Asia

Cancer

Child

Earthquake

Table 9: Evaluation on FDX using known-structure
data sets with different column ordering methods

Data set [[heuristic[natural amd colamd metis nesdis

P| 0839 | 0839 0.839 0.839 0.867 0.839
Alarm |R| 0.578 | 0.578 0.578 0.578 0.578 0.578
Fy| 0.684 | 0.684 0.684 0.684 0.693 0.684
1.000 1.000 0.800 0.800 0.800 0.800

Asia 1| 0500 | 0.500 0.500 0.500 0.500 0.500

Fi| 0.667 | 0.667 0615 0615 0.615 0.615

Cancer | P| 1000 [1000 0500 1000 1.000 1.000

R| 0750 | 0750 1.000 0.750 0.750 0.750

Fi| 0857 | 0.857 0.667 0.857 0.857 0.857

. P| 1.000 | 1.000 1.000 1.000 1.000 1.000
Child

R| 0450 | 0.450 0.450 0.450 0.450 0.450
Fi| 0.667 | 0.667 0.667 0.667