ECO2020 Tutorial 1

Young Wu

November 9, 2016

1 Question 1

1.1 Part a

Pareto Efficient allocation requires:

1. Individual feasibility:

$$
x_{1} \geq 0 \text { and } x_{2} \geq 0
$$

2. Aggregate feasibility:

$$
\begin{aligned}
& -2 \leq m_{1}+m_{2} \leq 0 \\
& \sqrt{x_{1}+x_{2}}+m_{1}+m_{2} \leq 0
\end{aligned}
$$

3. Optimality:

There does not exist $\left(\left(\tilde{x}_{1}, \tilde{m}_{1}\right),\left(\tilde{x}_{2}, \tilde{m}_{2}\right)\right)$ such that:

$$
\begin{aligned}
\sqrt{\tilde{x}_{1}}+\tilde{m}_{1} & \geq \sqrt{x_{1}}+m_{1} \\
\sqrt{\tilde{x}_{2}}+\tilde{m}_{2} & \geq \sqrt{x_{2}}+m_{2}
\end{aligned}
$$

One of them holds with strict inequality.

Method 1 (Direct):

$$
\begin{aligned}
& \max _{x_{1}, m_{1}} \sqrt{x_{1}}+m_{1} \text { such that } \sqrt{x_{2}}+m_{2}=u \text { and }-2 \leq m_{1}+m_{2} \leq 0 \text { and } \sqrt{x_{1}+x_{2}}+m_{1}+m_{2} \leq 0 \\
& \Rightarrow \max _{x_{1}, m_{1}} \sqrt{x_{1}}+m_{1} \text { such that } \sqrt{x_{2}}+m_{2}=u \text { and } m_{1}+m_{2}=-2 \text { and } x_{1}+x_{2}=4 \\
& \Rightarrow \max _{x_{1}} \sqrt{x_{1}}+(-2)-\left(u-\sqrt{4-x_{1}}\right) \\
& \Rightarrow \frac{1}{2 \sqrt{x_{1}}}-\frac{1}{2 \sqrt{4-x_{1}}}=0 \\
& \Rightarrow x_{1}=4-x_{1} \\
& \Rightarrow x_{1}=2
\end{aligned}
$$

Then, $x_{2}=4-x_{1}=2$ and any $m_{1}+m_{2}=-2$ is Pareto optimal.
There are no boundary solutions since m is not bounded.
Method 2 (MRS):

$$
\begin{aligned}
& \text { set } \mathrm{MRS}_{1}=\mathrm{MRS}_{2} \\
& \Rightarrow \frac{1}{2 \sqrt{x_{1}}}=\frac{1}{2 \sqrt{x_{2}}} \\
& \Rightarrow x_{1}=x_{2}=2
\end{aligned}
$$

Method 3 (Use Quasilinearity):
For quasilinear utility functions:

$$
\max u_{1}+u_{2} \Leftrightarrow \text { Pareto Optimal }
$$

Therefore,

$$
\begin{aligned}
& \max _{x_{1}, x_{2}, m_{1}, m_{2}} \sqrt{x_{1}}+m_{1}+\sqrt{x_{2}}+m_{2} \text { such that }-2 \leq m_{1}+m_{2} \leq 0 \text { and } \sqrt{x_{1}+x_{2}}+m_{1}+m_{2} \leq 0 \\
& \Rightarrow \max _{x_{1}, x_{2}, m_{1}, m_{2}} \sqrt{x_{1}}+m_{1}+\sqrt{x_{2}}+m_{2} \text { and } m_{1}+m_{2}=-2 \text { and } x_{1}+x_{2}=4 \\
& \Rightarrow \max _{x_{1}} \sqrt{x_{1}}+\sqrt{4-x_{1}}-2 \\
& \Rightarrow x_{1}=2
\end{aligned}
$$

Therefore, $\left\{\left(\left(x_{1}=2, m_{1}=m\right),\left(x_{2}=2, m_{2}=-2-m\right), m \in \mathbb{R}\right)\right\}$ are Pareto optimal.

1.2 Part b

Walrasian Equilibrium requires:

1. Consumers maximize utility:

$$
\begin{aligned}
& \max _{x_{1}, m_{1}} \sqrt{x_{1}}+m_{1} \text { such that } p_{x} x_{1}+p_{m} m_{1}=\frac{1}{2} \pi \\
& \max _{x_{2}, m_{2}} \sqrt{x_{2}}+m_{2} \text { such that } p_{x} x_{2}+p_{m} m_{2}=\frac{1}{2} \pi
\end{aligned}
$$

2. Firm maximizes profit:

$$
\pi=\max _{x, m} p_{x} x+p_{m} m \text { such that } \sqrt{x}+m \leq 0 \text { and }-2 \leq m \leq 0
$$

3. Markets clear:

$$
\begin{gathered}
x_{1}+x_{2}=x \\
m_{1}+m_{2}=m
\end{gathered}
$$

Normalize the prices to $p_{m}=1$, and solve the firm's problem:

$$
\begin{aligned}
& \max _{x, m} p_{x} x+m \text { such that } \sqrt{x}+m \leq 0 \text { and }-2 \leq m \leq 0 \\
& \Rightarrow \max _{x} p_{x} x-\sqrt{x} \text { such that } 0 \leq x \leq 4 \\
& \Rightarrow \text { FOC }: p_{x}-\frac{1}{2 \sqrt{x}}=0 \\
& \Rightarrow x=\frac{1}{4 p_{x}^{2}}
\end{aligned}
$$

Note that SOC: $\frac{1}{4} x^{-\frac{3}{2}}>0$ is not concave. Therefore, $x \in\{0,4\}$.

$$
x= \begin{cases}0 & \text { if } 4 p_{x}-\sqrt{4} \leq 0 p_{x}-\sqrt{0} \\ 4 & \text { if } 4 p_{x}-\sqrt{4} \geq 0 p_{x}-\sqrt{0}\end{cases}
$$

Or equivalently,

$$
x= \begin{cases}0 & \text { if } p_{x}<\frac{1}{2} \\ 4 & \text { if } p_{x}>\frac{1}{2} \\ \{0,4\} & \text { if } p_{x}=\frac{1}{2}\end{cases}
$$

And

$$
\begin{gathered}
m=-\sqrt{x} \\
\pi= \begin{cases}0 & \text { if } p_{x}<\frac{1}{2} \\
4 p_{x}-2 & \text { if } p_{x}>\frac{1}{2}\end{cases}
\end{gathered}
$$

Solve the consumer's problem:

$$
\begin{aligned}
& \max _{x_{i}, m_{i}} \sqrt{x_{i}}+m_{i} \text { such that } p_{x} x_{i}+m_{i}=\frac{1}{2} \pi \\
& \Rightarrow \max _{x_{i}} \sqrt{x_{i}}+\frac{1}{2} \pi-p_{x} x_{i} \\
& \Rightarrow \text { FOC }: \frac{1}{2 \sqrt{x_{i}}}-p_{x}=0 \\
& \Rightarrow x_{i}=\frac{1}{4 p_{x}^{2}}
\end{aligned}
$$

Use market clearing conditions to find prices and allocations:

$$
\text { set } x=x_{1}+x_{2}=\frac{1}{2 p_{x}^{2}}
$$

If $p_{x} \geq \frac{1}{2}$,

$$
\begin{aligned}
& x=\frac{1}{2 p_{x}^{2}}=4 \\
& \Rightarrow p_{x}=\sqrt{\frac{1}{8}}<\frac{1}{2}
\end{aligned}
$$

Contradiction.
If $p_{x} \leq \frac{1}{2}$,

$$
\begin{aligned}
& x=\frac{1}{2 p_{x}^{2}}=0 \\
& \Rightarrow p_{x}=\infty>\frac{1}{2}
\end{aligned}
$$

Contradiction.
Therefore, there are no price to clear the markets. No WE exist.

2 Question 2

(Comprehensive Exam June 2008 Q3)

2.1 Part a

Pareto Efficient allocation requires:

1. Individual feasibility:

$$
\begin{aligned}
& x_{A} \geq 0 \text { and } x_{B} \geq 0 \\
& y_{A} \geq 0 \text { and } y_{B} \geq 0
\end{aligned}
$$

2. Aggregate feasibility:

$$
\begin{aligned}
& 0 \leq x_{A}+x_{B} \leq 6 \\
& 0 \leq y_{A}+y_{B} \leq 3
\end{aligned}
$$

3. Optimality:

There does not exist $\left(\left(\tilde{x}_{A}, \tilde{y}_{A}\right),\left(\tilde{x}_{B}, \tilde{y}_{B}\right)\right)$ such that:

$$
\begin{gathered}
\tilde{x}_{A}+\tilde{y}_{A} \geq x_{A}+y_{A} \\
\tilde{y}_{B} \geq y_{B}
\end{gathered}
$$

One of them holds with strict inequality.

Consumer B does not care about x,

$$
x_{A}=6, x_{B}=0 \text { and any } y_{A}+y_{B}=3 \text { is Pareto Optimal }
$$

Therefore, $\left\{\left(x_{A}=6, y_{A}=y\right),\left(x_{B}=0, y_{B}=3-y\right), y \in[0,3]\right\}$ are Pareto Optimal.

2.2 Part b

Walrasian Equilibrium requires:

1. Consumers maximize utility:

$$
\begin{array}{r}
\max _{x_{A}, y_{A}} x_{A}+y_{A} \text { such that } p_{x} x_{A}+p_{y} y_{A}=5 p_{x}+p_{y} \\
\max _{x_{B}, y_{B}} y_{B} \text { such that } p_{x} x_{B}+p_{y} y_{B}=p_{x}+2 p_{y}
\end{array}
$$

2. Markets clear:

$$
\begin{gathered}
x_{A}+x_{B}=6 \\
y_{A}+y_{B}=3
\end{gathered}
$$

Normalize $p_{y}=1$, then consumers' problems:

$$
x_{A}= \begin{cases}5+\frac{1}{p_{x}} & \text { if } p_{x}<1 \\ 0 & \text { if } p_{x} \geq 1\end{cases}
$$

and

$$
y_{A}= \begin{cases}0 & \text { if } p_{x}<1 \\ 5 p_{x}+1 & \text { if } p_{x} \geq 1\end{cases}
$$

Note that A wants only y if $p_{x}=1$

$$
x_{B}=0, y_{B}=\frac{p_{x}+2 p_{y}}{p_{y}}=p_{x}+2
$$

Market clearing condition:
If $p_{x}<1$,

$$
x_{A}+x_{B}=5+\frac{1}{p_{x}}+0>6
$$

$x=6$. Contradiction.
If $p_{x} \geq 1$,

$$
y_{A}+y_{B}=5 p_{x}+1+p_{x}+2=6 p_{x}+3>3
$$

$y=3$. Contradiction.
Therefore, there are no price to clear the markets. No WE exist.

2.3 Part c

Method 1: (Direct)
Walrasian Equilibrium requires:

1. Consumers maximize utility:

$$
\begin{aligned}
\max x_{A}+y_{A} \text { such that } p_{x} x_{A}+p_{y} y_{A} & =\omega_{A}^{x} p_{x}+\omega_{A}^{y} p_{y} \\
\max y_{B} \text { such that } p_{x} x_{B}+p_{y} y_{B} & =\omega_{B}^{x} p_{x}+\omega_{B}^{y} p_{y}
\end{aligned}
$$

2. Markets clear:

$$
\begin{aligned}
& x_{A}+x_{B}=6 \\
& y_{A}+y_{B}=3
\end{aligned}
$$

Normalize $p_{y}=1$, then consumers' problems:

$$
x_{A}= \begin{cases}\omega_{A}^{x}+\frac{\omega_{A}^{y}}{p_{x}} & \text { if } p_{x}<1 \\ 0 & \text { if } p_{x} \geq 1\end{cases}
$$

and

$$
y_{A}= \begin{cases}0 & \text { if } p_{x}<1 \\ \omega_{A}^{x} p_{x}+\omega_{A}^{y} & \text { if } p_{x} \geq 1\end{cases}
$$

Note that A wants only y when $p_{x}=1$

$$
x_{B}=0, y_{B}=\omega_{B}^{x} p_{x}+\omega_{B}^{y}
$$

Market clearing condition:

If $p_{x}<1$,

$$
\begin{aligned}
& x_{A}+x_{B}=\omega_{A}^{x}+\frac{\omega_{A}^{y}}{p_{x}}=6 \\
& y_{A}+y_{B}=\omega_{B}^{x} p_{x}+\omega_{B}^{y}=3 \\
& \Rightarrow p_{x}=\frac{\omega_{A}^{y}}{6-\omega_{A}^{x}}=\frac{3-\omega_{B}^{y}}{\omega_{B}^{x}}=\frac{\omega_{A}^{y}}{\omega_{B}^{x}}
\end{aligned}
$$

Need $p_{x}<1$, meaning $\omega_{A}^{y}<\omega_{B}^{x}$.
Note that $\omega_{A}^{y}=\omega_{B}^{x}=0$ is feasible as well.
If $p_{x} \geq 1$,

$$
\begin{aligned}
& x_{A}+x_{B}=\omega_{A}^{x}+\frac{\omega_{A}^{y}}{p_{x}}=6 \\
& y_{A}+y_{B}=\omega_{A}^{x} p_{x}+\omega_{A}^{y}+\omega_{B}^{x} p_{x}+\omega_{B}^{y} \\
& =6 p_{x}+3=3
\end{aligned}
$$

No p_{x} satisfy both equalities.
Therefore, any feasible endowment in $\left\{\left(\left(\omega_{A}^{x}, \omega_{A}^{y}\right),\left(\omega_{B}^{x}, \omega_{B}^{y}\right)\right): \omega_{A}^{y}<\omega_{B}^{x}\right.$ or $\left.\omega_{A}^{y}=\omega_{B}^{x}=0\right\}$ supports an WE.

Method 2: (Diagram)
Consumer B only wants good y.
Consumer A either wants all x or all y.
It cannot be WE if both A and B wants all y, so $p_{x}<1$ and in any $\mathrm{WE},\left(\left(x_{A}=6, y_{A}=0\right),\left(x_{B}=0, y_{B}=3\right)\right)$.
Therefore, either start WE or have $p_{x}=\frac{\omega_{A}^{y}}{6-\omega_{A}^{x}}<1$, meaning any feasible endowment in
$\left\{\left(\left(\omega_{A}^{x}, \omega_{A}^{y}\right),\left(\omega_{B}^{x}, \omega_{B}^{y}\right)\right): \omega_{A}^{y}<\omega_{B}^{x}\right.$ or $\left.\omega_{A}^{y}=\omega_{B}^{x}=0\right\}$ supports an WE.

3 Question 3

The first three are free disposal activities:

			A 4	A 5	A 6
-1	0	0	4	3	-3
0	-1	0	-3	-2	4
0	0	-1	-1	-2	-1

Walrasian Equilibrium requires:

1. Consumers maximize utility:

Walras Law:

$$
p_{1} f_{1}+p_{2} f_{2}+p_{3} f_{3}=10 p_{3}
$$

2. Firm maximizes profit:

Zero profit conditions:

$$
\begin{aligned}
\alpha_{4}\left(4 p_{1}-3 p_{2}-p_{3}\right) & =0 \\
\alpha_{5}\left(3 p_{1}-2 p_{2}-2 p_{3}\right) & =0 \\
\alpha_{6}\left(-3 p_{1}+4 p_{2}-p_{3}\right) & =0
\end{aligned}
$$

3. Markets clear:

$$
\begin{aligned}
4 \alpha_{4}+3 \alpha_{5}-3 \alpha_{6} & =f_{1} \\
-3 \alpha_{4}-2 \alpha_{5}+4 \alpha_{6} & =f_{2} \\
10-1 \alpha_{4}-2 \alpha_{5}-1 \alpha_{6} & =f_{3}
\end{aligned}
$$

Try to solve the zero profit conditions simultaneously:
Equation $4-6 \Rightarrow 7 p_{1}-7 p_{2}=0 \Rightarrow p_{1}=p_{2}$
Equation $4 \Rightarrow p_{1}-p_{3}=0$
Equation $5 \Rightarrow p_{1}-2 p_{3}=0$
Cannot have $\alpha_{4}, \alpha_{5}, \alpha_{6}>0$ at the same time:
Normalize $p_{3}=1$ and solve three cases:
Case 1: $\alpha_{4}, \alpha_{5}>0, \alpha_{6}=0$
Impossible since good 2 cannot be produced with activities 4 and 5 .

Case 2: $\alpha_{5}, \alpha_{6}>0, \alpha_{4}=0$

$$
\begin{aligned}
& 3 p_{1}-2 p_{2}-2=0 \\
& -3 p_{1}+4 p_{2}-1=0 \\
& \Rightarrow p_{1}=\frac{5}{3}, p_{2}=\frac{3}{2}
\end{aligned}
$$

But $4 p_{1}-3 p_{2}-p_{3}=\frac{20}{3}-\frac{9}{2}-1=\frac{7}{6}>0$, implying $\alpha_{4}=\infty$, contradiction.
Case 3: $\alpha_{4}, \alpha_{6}>0, \alpha_{5}=0$

$$
\begin{aligned}
& 4 p_{1}-3 p_{2}-1=0 \\
& -3 p_{1}+4 p_{2}-1=0 \\
& \Rightarrow p_{1}=p_{2}=1
\end{aligned}
$$

Check $3 p_{1}-2 p_{2}-2 p_{3}=3-2-2=-1<0$, feasible.
Market clearing condition with Consumer's Walras Law:

$$
\begin{aligned}
4 \alpha_{4}-3 \alpha_{6} & =f_{1} \\
-3 \alpha_{4}+4 \alpha_{6} & =f_{2} \\
10-1 \alpha_{4}-1 \alpha_{6} & =f_{3} \\
f_{1}+f_{2}+f_{3} & =10
\end{aligned}
$$

Solve using the first two equations and check with the last two

$$
\begin{aligned}
\alpha_{4} & =\frac{1}{7}\left(4 f_{1}-3 f_{2}\right) \\
\alpha_{6} & =\frac{1}{7}\left(3 f_{1}+4 f_{2}\right)
\end{aligned}
$$

Therefore, $\left\{\left(p_{1}=p_{2}=p_{3}=1\right),\left(f_{1}, f_{2}, f_{3}\right),\left(\alpha_{1}=\alpha_{2}=\alpha_{3}=0, \alpha_{4}=\frac{1}{7}\left(4 f_{1}-3 f_{2}\right), \alpha_{5}=0, \alpha_{6}=\frac{1}{7}\left(3 f_{1}+4 f_{2}\right)\right\}\right.$ is the WE.

4 Question 4

4.1 Part a

Walrasian Equilibrium requires:

1. Consumers maximize utility:

$$
\max _{x_{\theta}, y_{\theta}} \alpha x_{\theta}+\theta Y^{D} y_{\theta} \text { such that } p_{x} x_{\theta}+p_{y} y_{\theta}=1 p_{x}+0 p_{y}+\pi, \forall \theta \in[0,1]
$$

2. Firm maximizes profit:

No production means

$$
-c p_{x}+1 p_{y} \leq 0
$$

3. Markets clear:

$$
\begin{aligned}
& x=\int_{0}^{1} x_{\theta} d \theta=1 \\
& y=Y^{D}=\int_{0}^{1} y_{\theta} d \theta=0
\end{aligned}
$$

Normalize $p_{y}=1$, (The solution normalized $p_{x}=1$). Activity 3 not used means that it generates negative profits:

$$
\begin{aligned}
-c p_{x}+1 & \leq 0 \\
p_{x} & \geq \frac{1}{c}
\end{aligned}
$$

Consumer's problem has constraint $p_{x} x_{\theta}=p_{x} 1$

$$
x_{\theta}=1
$$

Therefore, $\left\{\left(p_{x}=p, p_{y}=1\right.\right.$, for $\left.p \in\left[\frac{1}{c}, \infty\right)\right),\left(x_{\theta}=1, y_{\theta}=0\right.$, for $\left.\left.\theta \in[0,1]\right),\left(\alpha_{1}=\alpha_{2}=\alpha_{3}=0\right)\right\}$ is a WE.

4.2 Part b

Walrasian Equilibrium requires:

1. Consumers maximize utility:

$$
\max _{x_{\theta}, y_{\theta}} \alpha x_{\theta}+\theta Y^{D} y_{\theta} \text { such that } p_{x} x_{\theta}+p_{y} y_{\theta}=1 p_{x}+0 p_{y}+\pi, \forall \theta \in[0,1]
$$

2. Firm maximizes profit:

Zero profit conditions:

$$
-c p_{x}+1 p_{y}=0
$$

3. Markets clear:

$$
\begin{aligned}
& x=\int_{0}^{1} x_{\theta} d \theta \\
& y=Y^{D}=\int_{0}^{1} y_{\theta} d \theta
\end{aligned}
$$

Normalize $p_{y}=1$, (The solution normalized $p_{x}=1$). Use the firm's zero profit condition to find p_{x} :

$$
\begin{array}{r}
-c p_{x}+1=0 \\
p_{x}=\frac{1}{c} \\
\pi=0
\end{array}
$$

Then consumer's problem becomes:

$$
\begin{gathered}
\max _{x_{\theta}, y_{\theta}} \alpha x_{\theta}+\theta Y^{D} y_{\theta} \text { such that } \frac{1}{c} x_{\theta}+y_{\theta}=\frac{1}{c} \\
x_{\theta}= \begin{cases}0 & \text { if } \frac{\theta Y^{D}}{c}>\alpha \\
1 & \text { if } \frac{\theta Y^{D}}{c}<\alpha \\
{[0,1]} & \text { if } \frac{\theta Y^{D}}{c}=\alpha\end{cases}
\end{gathered}
$$

and,

$$
y_{\theta}= \begin{cases}0 & \text { if } \frac{\theta Y^{D}}{c}<\alpha \\ \frac{1}{c} & \text { if } \frac{\theta Y^{D}}{c}>\alpha \\ {\left[0, \frac{1}{c}\right]} & \text { if } \frac{\theta Y^{D}}{c}=\alpha\end{cases}
$$

Market clearing condition:

Method 1 (Y market)

$$
\begin{aligned}
Y^{D} & =\int_{0}^{1} \frac{1}{c} \mathbb{I}\left\{\frac{\theta Y^{D}}{c}>\alpha\right\} \\
& =\int \frac{\alpha c}{Y^{D}} \frac{1}{c} d \theta \\
& =\frac{1}{c}-\frac{\alpha}{Y^{D}}
\end{aligned}
$$

Solve for Y^{D} using $\alpha c^{2}=\frac{1}{4}$:

$$
\begin{aligned}
& c\left(Y^{D}\right)^{2}-Y^{D}-\alpha c=0 \\
& \Rightarrow Y^{D}=\frac{1 \pm \sqrt{1-4 \alpha c^{2}}}{2 c} \\
& \Rightarrow Y^{D}=\frac{1}{2 c}
\end{aligned}
$$

Method 2 (X market):

$$
\begin{aligned}
& \int_{0}^{1} 1 \mathbb{I}\left\{\frac{\theta Y^{D}}{c}<\alpha\right\}^{d \theta} \\
& =\int_{0}^{\frac{\alpha c}{Y^{D}}} d \theta \\
& =\frac{\alpha c}{Y^{D}}
\end{aligned}
$$

$\left(1-\frac{\alpha c}{Y^{D}}\right)$ units of X are converted into Y^{D} units of Y , therefore as before

$$
\begin{aligned}
& \left(1-\frac{\alpha c}{Y^{D}}\right) \cdot c=Y^{D} \\
& \Rightarrow Y^{D}=\frac{1}{2 c}
\end{aligned}
$$

In any case, the condition $\frac{\theta Y^{D}}{c}>\alpha$ becomes:

$$
\begin{aligned}
\theta \frac{1}{2 c} \frac{1}{c} & >\alpha \\
\theta & >2 \alpha c^{2} \\
\theta & >\frac{1}{2}
\end{aligned}
$$

This means $\frac{1}{2 c}$ level of activity 3 is used to convert $c \cdot \frac{1}{2 c}=\frac{1}{2}$ unit of X into $\frac{1}{2 c}$ units of Y .

$$
\left\{\left(p_{x}=\frac{1}{c}, p_{y}=1\right),\left(x_{\theta}=1 \mathbb{I}\left\{\theta \leq \frac{1}{2}\right\}, y_{\theta}=\frac{1}{c} \mathbb{I}\left\{\theta>\frac{1}{2}\right)\right), \text { for } \theta \in[0,1],\left(\alpha_{1}=\alpha_{2}=0, \alpha_{3}=\frac{1}{2 c}\right)\right\} \text { is a WE. }
$$

4.3 Part c

For $\theta \leq \frac{1}{2}$, they get the same allocation $\left(x_{\theta}=1, y_{\theta}=0\right)$ resulting in utility α.
For $\theta>\frac{1}{2}$, they get strictly preferred allocations $\left(x_{\theta}=0, y_{\theta}=\frac{1}{c}\right)$ resulting in utility $\theta \frac{1}{2 c} \frac{1}{c}=2 \theta \alpha>\alpha$.
Allocation in Part b Pareto dominates allocation in Part c.

