ECO2020 Tutorial 2

Young Wu

November 22, 2016

1 Question 1

1.1 Part a

Let $f(i)=\left(f_{1}(i), f_{2}(i), \ldots, f_{L}(i)\right)$
Pareto Efficient allocation requires:

1. Individual feasibility:

$$
f_{j}(i) \geq 0 \forall i \in[0,1], j \in\{1,2, \ldots, L\}
$$

2. Aggregate feasibility:

$$
\int_{0}^{1} f(i) d i=\omega
$$

where $\omega=\int_{0}^{1} \omega(i) d i$
3. Optimality:

There does not exist (\tilde{f}) such that:

$$
\tilde{f}(i) \succsim_{i} f(i) \text { for } i \in[0,1]
$$

with strict inequality on some non-empty open interval $(a, b) \in[0,1]$.
It is not enough to have strict inequality for one single consumer (or on any measure-zero subset of $[0,1])$.

1.2 Part b

Consider the WE (p, f),
Suppose, for a contradiction, there exists \tilde{f} such that

$$
\begin{array}{r}
\tilde{f}(i) \succsim_{i} f(i) \text { for } i \in[0,1] \\
\tilde{f}(i) \succ_{i} f(i) \text { for } i \in(a, b) \text { for some } a, b
\end{array}
$$

with strict inequality on some non-empty open interval $(a, b) \in[0,1]$.
Then it can be shown using LNS that,

$$
\begin{aligned}
& p \cdot \tilde{f}(i) \geq p \cdot f(i) \forall i \in[0,1] \\
& p \cdot \tilde{f}(i)>p \cdot f(i) \forall i \in(a, b)
\end{aligned}
$$

Proof:
Suppose not, meaning $p \cdot \tilde{f}<p \cdot f$,
By continuity, there is a neighborhood $B_{\varepsilon}(\tilde{f})$ such that $\tilde{f} \in B_{\varepsilon}(\tilde{f}) \Rightarrow p \cdot \tilde{f}<p \cdot f$
By LNS, there is an $\tilde{\tilde{f}} \in B_{\varepsilon}(\tilde{f})$ with the property that $\tilde{\tilde{f}} \succ \tilde{f}$
Combining them implies: $\tilde{\tilde{f}} \succ f$ with $p \cdot \tilde{f}<p \cdot f$, contradicting the fact that f is a part of WE.
The second line with strict inequality follows directly from definition of WE.
End Proof.
Which implies,

$$
\begin{aligned}
& \int_{[a, b]} p \cdot \tilde{f}(i) d i>\int_{[a, b]} p \cdot f(i) d i \\
& \Rightarrow \int_{[0,1]} p \cdot \tilde{f}(i) d i>\int_{[0,1]} p \cdot f(i) d i \\
& \Rightarrow p \cdot \omega>p \cdot \omega
\end{aligned}
$$

Contradiction.

2 Question 2

2.1 Part a

Consider the Pareto optimal allocation $(x, \omega-x) \in X^{2}$ where $X=\mathbb{R}^{L}+$

Take two sets:

$$
\begin{aligned}
U_{x}^{A} & =\left\{\tilde{x} \in X^{o}: \tilde{x} \succ_{A} x\right\} \\
U_{x}^{B} & =\left\{\omega-\tilde{x} \in X^{o}: \omega-\tilde{x} \succ_{B} x\right\}
\end{aligned}
$$

By continuity, these two sets are open (since their complements are closed, and interior of X is open).
Also, by Pareto optimality,

$$
U_{x}^{A} \cap U_{x}^{B}=\emptyset
$$

(since otherwise anything in the intersection would Pareto dominate x).
By Separating Hyperplane Theorem,

$$
\exists(p, w) \text { such that } p \cdot \tilde{x} \geq w \forall \tilde{x} \in U_{x}^{A} \text { and } p \cdot \tilde{x} \leq w \forall \tilde{x} \in U_{x}^{B}
$$

It can be shown that $p \cdot x=w$.

Proof:

Use the closure sets:

$$
\begin{aligned}
& \bar{U}_{x}^{A}=\left\{\tilde{x} \in X: \tilde{x} \succsim_{A} x\right\} \\
& \bar{U}_{x}^{B}=\left\{\omega-\tilde{x} \in X: \omega-\tilde{x} \succsim_{B} x\right\}
\end{aligned}
$$

Apply Separating Hyperplane Theorem on \bar{U}_{x}^{A} with U_{x}^{B} to get:

$$
p \cdot x \geq w
$$

and on U_{x}^{A} with \bar{U}_{x}^{B} to get:

$$
p \cdot x \leq w
$$

End Proof.

It can be shown that the inequalities are strict (use Lemma 2)
Proof:
Suppose $p \cdot \tilde{x}=w$ for a contradiction,

By continuity, there is a neighborhood $B_{\varepsilon}(\tilde{x})$ such that $\tilde{\tilde{x}} \in B_{\varepsilon}(\tilde{x}) \Rightarrow \tilde{\tilde{x}} \succ x$.
Also, $p \cdot(\alpha \tilde{x})<p \cdot x \forall \alpha<1$ (linear combination with the 0 vector and $\tilde{x} \neq 0$)
For α close to 1 , take $\alpha \tilde{x} \in B_{\varepsilon}(\tilde{x}), \alpha \tilde{x} \succ x$
Contradiction (since $\alpha \tilde{x} \in U_{x}^{A}$ but $\left.p \cdot(\alpha \tilde{x})<w\right)$.
End Proof.
There with initial endowments $\omega_{A}=x$ and $\omega_{B}=\omega-x$, the prices p and the allocations $(x, \omega-x)$ forms a WE.

2.2 Part b

Lemma 2 will not apply here because $\alpha \tilde{x}=0 \forall 0<\alpha<1$.
If $x_{A}=0$, take \bar{U}_{x}^{A} and U_{x}^{B} and apply the Separating Hyperplane Theorem.
Alternatively, use Supporting Hyperplane Theorem on U_{x}^{B}.
If $x_{B}=0$, take U_{x}^{A} and \bar{U}_{x}^{B} and apply the Separating Hyperplane Theorem.
Alternatively, use Supporting Hyperplane Theorem on U_{x}^{A}.
The only thing left is to show $p \gg 0$ using strict monotonicity:
Proof:
Suppose $p_{i}=0$, consider $x+\varepsilon e_{i}$ where e_{i} the vector with 1 on the i-th coordinate and 0 everywhere else.
For $\varepsilon>0, x+\varepsilon e_{i} \succ x$ by strict monotonicity, but $p \cdot x=p \cdot\left(x+\varepsilon e_{i}\right)$ since $p_{i}=0$. Contradiction.
End Proof.

3 Question 3

(Comprehensive Exam August 2014 Q3)

3.1 Part a

Walrasian Equilibrium requires:

1. Consumers maximize utility:

$$
\begin{aligned}
& \max _{x_{A 1}, y_{A 1}} \sqrt{x_{A 1}, y_{A 1}} \text { such that } p_{A}^{x} x_{A 1}+p_{A}^{y} y_{A 1}=3 p_{A}^{x}+p_{A}^{y} \\
& \max _{x_{A 2}, y_{A 2}} \sqrt{x_{A 2}, y_{A 2}} \text { such that } p_{A}^{x} x_{A 2}+p_{A}^{y} y_{A 2}=3 p_{A}^{x}+p_{A}^{y} \\
& \max _{x_{B 1}, y_{B 1}} \sqrt{x_{B 1}, y_{B 1}} \text { such that } p_{B}^{x} x_{B 1}+p_{B}^{y} y_{B 1}=p_{B}^{x}+2 p_{B}^{y} \\
& \max _{x_{B 2}, y_{B 2}} \sqrt{x_{B 2}, y_{B 2}} \text { such that } p_{B}^{x} x_{B 2}+p_{B}^{y} y_{B 2}=p_{B}^{x}+2 p_{B}^{y}
\end{aligned}
$$

2. Firm maximizes (zero) profit:

$$
\alpha\left(-p_{B}^{x}+p_{B}^{y}\right)=0
$$

3. Markets clear:

$$
\begin{aligned}
& x_{A 1}+x_{A 2}=3+3 \\
& y_{A 1}+y_{A 2}=1+1 \\
& x_{B 1}+x_{B 2}=1+1-\alpha \\
& y_{B 1}+y_{B 2}=2+2+\alpha
\end{aligned}
$$

Normalize $p_{A}^{y}=1$, then

$$
\begin{aligned}
& x_{A 1}=x_{A 2}=\frac{3 p_{A}^{x}+1}{2 p_{A}^{x}} \\
& y_{A 1}=y_{A 2}=\frac{3 p_{A}^{x}+1}{2}
\end{aligned}
$$

Either check X market clearing:

$$
\begin{aligned}
\frac{3 p_{A}^{x}+1}{2 p_{A}^{x}}+\frac{3 p_{A}^{x}+1}{2 p_{A}^{x}} & =3+3 \\
p_{A}^{x} & =\frac{1}{3}
\end{aligned}
$$

Or (easier) check Y market clearing:

$$
\begin{aligned}
\frac{3 p_{A}^{x}+1}{2}+\frac{3 p_{A}^{x}+1}{2} & =1+1 \\
p_{A}^{x} & =\frac{1}{3}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& x_{A 1}=x_{A 2}=3 \\
& y_{A 1}=y_{A 2}=1
\end{aligned}
$$

Normalize $p_{B}^{y}=1$, then

$$
\begin{aligned}
& x_{B 1}=x_{B 2}=\frac{p_{B}^{x}+2}{2 p_{B}^{x}} \\
& y_{B 1}=y_{B 2}=\frac{p_{B}^{x}+2}{2}
\end{aligned}
$$

Case 1: $\alpha=0$
Either check X market clearing:

$$
\begin{gathered}
\frac{p_{B}^{x}+2}{2 p_{B}^{x}}+\frac{p_{B}^{x}+2}{2 p_{B}^{x}}=1+1 \\
p_{B}^{x}=2
\end{gathered}
$$

Or (easier) check Y market clearing:

$$
\begin{aligned}
\frac{p_{B}^{x}+2}{2}+\frac{p_{B}^{x}+2}{2} & =2+2 \\
p_{B}^{x} & =2
\end{aligned}
$$

Check zero profit condition:

$$
-p_{B}^{x}+p_{B}^{y}=-2+1=-1<0
$$

Therefore there is a WE with the above prices and allocations:

$$
\begin{gathered}
x_{B 1}=x_{B 2}=1 \\
y_{B 1}=y_{B 2}=2
\end{gathered}
$$

Case 2: $\alpha>0$

$$
p_{B}^{x}=p_{B}^{y}=1
$$

Check X market clearing:

$$
\begin{aligned}
& \frac{p_{B}^{x}+2}{2 p_{B}^{x}}+\frac{p_{B}^{x}+2}{2 p_{B}^{x}}=1+1-\alpha \\
& \Rightarrow 3=2-\alpha \\
& \Rightarrow \alpha=-1
\end{aligned}
$$

Not feasible.
Or (not much easier) check Y market clearing:

$$
\begin{aligned}
& \frac{p_{B}^{x}+2}{2}+\frac{p_{B}^{x}+2}{2}=2+2=2+2+\alpha \\
& \Rightarrow 3=4+\alpha \\
& \Rightarrow \alpha=-1
\end{aligned}
$$

Not feasible.

No WE.

3.2 Part b

Walrasian Equilibrium requires:

1. Consumers maximize utility:

$$
\begin{aligned}
& \max _{x_{A 1}, y_{A 1}} \sqrt{x_{A 1}, y_{A 1}} \text { such that } p^{x} x_{A 1}+p^{y} y_{A 1}=3 p^{x}+p^{y} \\
& \max _{x_{A 2}, y_{A 2}} \sqrt{x_{A 2}, y_{A 2}} \text { such that } p^{x} x_{A 2}+p^{y} y_{A 2}=3 p^{x}+p^{y} \\
& \max _{x_{B 1}, y_{B 1}} \sqrt{x_{B 1}, y_{B 1}} \text { such that } p^{x} x_{B 1}+p^{y} y_{B 1}=p^{x}+2 p^{y} \\
& \max _{x_{B 2}, y_{B 2}} \sqrt{x_{B 2}, y_{B 2}} \text { such that } p^{x} x_{B 2}+p^{y} y_{B 2}=p^{x}+2 p^{y}
\end{aligned}
$$

2. Firm maximizes (zero) profit:

$$
\alpha\left(-p^{x}+p^{y}\right)=0
$$

3. Markets clear:

$$
\begin{gathered}
x_{A 1}+x_{A 2}+x_{B 1}+x_{B 2}=3+3+1+1-\alpha \\
y_{A 1}+y_{A 2}+y_{B 1}+y_{B 2}=1+1+2+2+\alpha
\end{gathered}
$$

Normalize $p^{y}=1$, then

$$
\begin{aligned}
& x_{A 1}=x_{A 2}=\frac{3 p^{x}+1}{2 p^{x}} \\
& y_{A 1}=y_{A 2}=\frac{3 p^{x}+1}{2} \\
& x_{B 1}=x_{B 2}=\frac{p^{x}+2}{2 p^{x}} \\
& y_{B 1}=y_{B 2}=\frac{p^{x}+2}{2}
\end{aligned}
$$

Case 1: $\alpha=0$
Check X market clearing:

$$
\begin{aligned}
& \frac{3 p^{x}+1}{p^{x}}+\frac{p^{x}+2}{p^{x}}=8 \\
& \Rightarrow p^{x}=\frac{3}{4}
\end{aligned}
$$

Or (easier) check Y market clearing:

$$
\begin{aligned}
& \left(3 p^{x}+1\right)+\left(p^{x}+2\right)=6 \\
& \Rightarrow p^{x}=\frac{3}{4}
\end{aligned}
$$

Check zero profit:

$$
-p^{x}+p^{y}=\frac{-3}{4}+1>0 \mathrm{NO}!
$$

No WE.

Case 2: $\alpha>0$

$$
p^{x}=p^{y}=1
$$

Check X market clearing:

$$
\begin{aligned}
& \frac{3 p^{x}+1}{p^{x}}+\frac{p^{x}+2}{p^{x}}=8-\alpha \\
& \Rightarrow \alpha=1
\end{aligned}
$$

Or (not much easier) check Y market clearing:

$$
\begin{aligned}
& \left(3 p^{x}+1\right)+\left(p^{x}+2\right)=6+\alpha \\
& \Rightarrow \alpha=1
\end{aligned}
$$

Therefore there is a WE with the above prices and allocations:

$$
\begin{aligned}
& x_{A 1}=x_{A 2}=2 \\
& y_{A 1}=y_{A 2}=2 \\
& x_{B 1}=x_{B 2}=\frac{3}{2} \\
& y_{B 1}=y_{B 2}=\frac{3}{2}
\end{aligned}
$$

3.3 Part c

No trade:

$$
\begin{aligned}
& u_{A 1}=u_{A 2}=\sqrt{3 \cdot 1}=\sqrt{3} \\
& u_{B 1}=u_{B 2}=\sqrt{1 \cdot 2}=\sqrt{2}
\end{aligned}
$$

Trade:

$$
\begin{aligned}
& u_{A 1}=u_{A 2}=\sqrt{2 \cdot 2}=2>\sqrt{3} \\
& u_{B 1}=u_{B 2}=\sqrt{\frac{3}{2} \cdot \frac{3}{2}}=\frac{3}{2}>\sqrt{2}
\end{aligned}
$$

All consumers are better off.
Method 1: (Solve the whole thing again)
No trade:

$$
\begin{aligned}
& x_{A 1}=x_{A 2}=2 \\
& y_{A 1}=y_{A 2}=2 \\
& x_{B 1}=1 \\
& y_{B 1}=2 \\
& x_{B 2}=1 \\
& y_{B 2}=2
\end{aligned}
$$

Trade:

$$
\begin{aligned}
& x_{A 1}=x_{A 2}=2 \\
& y_{A 1}=y_{A 2}=2 \\
& x_{B 1}=1 \\
& y_{B 1}=1 \\
& x_{B 2}=2 \\
& y_{B 2}=2
\end{aligned}
$$

Consumer B1 worse off.

Consumer B2 better off.
Method 2: (Argue with prices)
Prices for x decreases with free trade:
Consumers owning more X are worse off.
Consumers owning more Y are better off.

4 Question 4

(Comprehensive Exam August 2012 Q3)

4.1 Part a

Walrasian Equilibrium requires:

1. Consumers maximize utility:

$$
\begin{aligned}
\max _{x_{A}, y_{A}} x_{A}-\frac{1}{y_{A}} \text { such that } p_{x} x_{A}+p_{y} y_{A} & =2 p_{x} \\
\max _{x_{B}, y_{B}}-\frac{1}{x_{B}}+y_{B} \text { such that } p_{x} x_{B}+p_{y} y_{B} & =2 p_{y}
\end{aligned}
$$

2. Markets clear:

$$
\begin{aligned}
& x_{A}+x_{B}=2 \\
& y_{A}+y_{B}=2
\end{aligned}
$$

Normalize $p_{y}=1$, then consumer's problem:

$$
\begin{aligned}
& \max _{x_{A}, y_{A}} x_{A}-\frac{1}{y_{A}} \text { such that } p_{x} x_{A}+y_{A}=2 p_{x} \\
& \Rightarrow \max _{y_{A}} 2-\frac{y_{A}}{p_{x}}-\frac{1}{y_{A}} \\
& \Rightarrow \text { FOC }:-\frac{1}{p_{x}}+\frac{1}{y_{A}^{2}}=0 \\
& \Rightarrow y_{A}=\sqrt{p_{x}}, x_{A}=2-\frac{1}{\sqrt{p_{x}}}
\end{aligned}
$$

Need feasibility:

$$
\begin{aligned}
& x_{A} \geq 0 \\
& \Rightarrow p_{x} \geq \frac{1}{4}
\end{aligned}
$$

If $p_{x}<\frac{1}{4}$

$$
y_{A}=2 p_{x}, x_{A}=0
$$

and

$$
\begin{aligned}
& \max _{x_{B}, y_{B}}-\frac{1}{x_{B}}+y_{B} \text { such that } p_{x} x_{B}+y_{B}=2 \\
& \Rightarrow \max _{y_{B}}-\frac{1}{x_{B}}-2-p_{x} x_{B} \\
& \Rightarrow \text { FOC }: \frac{1}{x_{B}^{2}}-p_{x}=0 \\
& \Rightarrow x_{B}=\frac{1}{\sqrt{p_{x}}}, y_{B}=2-\sqrt{p_{x}}
\end{aligned}
$$

Need feasibility:

$$
\begin{aligned}
& y_{B} \geq 0 \\
& \quad \Rightarrow p_{x} \leq 4
\end{aligned}
$$

If $p_{x}>4$

$$
x_{B}=\frac{2}{p_{x}}, y_{B}=0
$$

Market clearing condition:
Case 1: $p_{x}<\frac{1}{4}$
Check X market clearing:

$$
\begin{aligned}
& 0+\frac{1}{\sqrt{p_{x}}}=2 \\
& \Rightarrow p_{x}=\frac{1}{4}
\end{aligned}
$$

Not feasible.
No WE.
Case 2: $p_{x}>4$
Check Y market clearing:

$$
\begin{aligned}
& \sqrt{p_{x}}+0=2 \\
& \Rightarrow p_{x}=4
\end{aligned}
$$

Not feasible.

No WE.
Case 3: $\frac{1}{4} \leq p_{x} \leq 4$
Check X market clearing:

$$
2-\frac{1}{\sqrt{p_{x}}}+\frac{1}{\sqrt{p_{x}}}=2
$$

Always satisfied.
Or check X market clearing:

$$
\sqrt{p_{x}}+2-\sqrt{p_{x}}=2
$$

Always satisfied.
Therefore there are WE for all prices $p_{x} \in\left[\frac{1}{4}, 4\right]$

4.2 Part b

Walrasian Equilibrium requires:

1. Consumers maximize utility:

$$
\begin{aligned}
\max _{x_{A}, y_{A}} x_{A}-\frac{1}{y_{A}} \text { such that } p_{x} x_{A}+p_{y} y_{A} & =2 p_{x} \\
\max _{x_{B}, y_{B}}-\frac{1}{x_{B}}+y_{B} \text { such that } p_{x} x_{B}+p_{y} y_{B} & =2 p_{y}
\end{aligned}
$$

2. Firms maximize (zero) profit:

$$
\begin{aligned}
\alpha_{1}\left(p_{x}-2 p_{y}\right) & =0 \\
\alpha_{2}\left(-5 p_{x}+p_{y}\right) & =0
\end{aligned}
$$

3. Markets clear:

$$
\begin{aligned}
x_{A}+x_{B} & =2+\alpha_{1}-5 \alpha_{2} \\
y_{A}+y_{B} & =2-2 \alpha_{1}+\alpha_{2}
\end{aligned}
$$

Case 1: $\alpha_{1}=\alpha_{2}=0$
Zero profit condition:

$$
\begin{aligned}
& p_{x}-2 p_{y} \leq 0 \text { and }-5 p_{x}+p_{y} \leq 0 \\
& \Rightarrow p_{x} \leq 2 \text { and } p_{x} \geq \frac{1}{5}
\end{aligned}
$$

Therefore there are WE (same allocations as in Part a) for all prices $p_{x} \in\left[\frac{1}{4}, 2\right]$

4.3 Part c

Case 2: $\alpha_{1}>0, \alpha_{2}=0$
Zero profit condition:

$$
\begin{aligned}
& p_{x}-2 p_{y}=0 \text { and }-5 p_{x}+p_{y} \leq 0 \\
& \Rightarrow p_{x}=2
\end{aligned}
$$

Check X market clearing:

$$
\begin{aligned}
& 2-\frac{1}{\sqrt{p_{x}}}+\frac{1}{\sqrt{p_{x}}}=2+\alpha_{1} \\
& \Rightarrow 2=2+\alpha_{1} \\
& \Rightarrow \alpha_{1}=0
\end{aligned}
$$

Not feasible.

No WE.
Case 3: $\alpha_{1}=0, \alpha_{2}>0$
Zero profit condition:

$$
\begin{aligned}
& p_{x}-2 p_{y} \leq 0 \text { and }-5 p_{x}+p_{y}=0 \\
& \Rightarrow p_{x}=\frac{1}{5}
\end{aligned}
$$

Check X market clearing:

$$
\begin{aligned}
& 0+\frac{1}{\sqrt{p_{x}}}=2-5 \alpha_{2} \\
& \Rightarrow \sqrt{5}=2-5 \alpha_{2} \\
& \Rightarrow \alpha_{2}=\frac{2-\sqrt{5}}{5}<0
\end{aligned}
$$

Or (harder) check Y market clearing:

$$
\begin{aligned}
& 2 p_{x}+2-\sqrt{p_{x}}=2+\alpha_{2} \\
& \Rightarrow \frac{2}{5}-\frac{\sqrt{5}}{5}=\alpha_{2}
\end{aligned}
$$

Same.
Not feasible.
No WE.

