ECO2020 Tutorial 3

Young Wu

November 30, 2016

1 Question 1

(Comprehensive Exam June 2005 Q3)

1.1 Part a

Competitive Equilibrium requires:

1. Consumers maximize utility:

$$
\begin{aligned}
& q_{1}(\alpha) \geq \theta q_{2}(\alpha) \text { for } \theta \in \Theta_{1} \\
& q_{1}(\alpha) \leq \theta q_{2}(\alpha) \text { for } \theta \in \Theta_{2}
\end{aligned}
$$

2. Markets clear:

$$
\int_{\Theta_{1}} f(\theta) d \theta=\alpha
$$

Consider $\hat{\theta}=\frac{q_{1}(\alpha)}{q_{2}}(\alpha)$,
If $\theta<\hat{\theta}$,

$$
\begin{aligned}
& q_{1}(\alpha)=q_{2}(\alpha) \hat{\theta}>q_{2}(\alpha) \theta \\
& \Rightarrow \theta \in \Theta_{1}
\end{aligned}
$$

If $\theta>\hat{\theta}$,

$$
\begin{aligned}
& q_{1}(\alpha)=q_{2}(\alpha) \hat{\theta}<q_{2}(\alpha) \theta \\
& \Rightarrow \theta \in \Theta_{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \Theta_{1}=[0, \hat{\theta}] \\
& \Theta_{2}=[\hat{\theta}, 1]
\end{aligned}
$$

1.2 Part b

$$
\begin{aligned}
\hat{\theta} & =\frac{q_{1}(\alpha)}{q_{2}}(\alpha) \\
& =\frac{2 a+\alpha}{2 a+\alpha+1}
\end{aligned}
$$

Then market clearing condition becomes:

$$
\begin{aligned}
& \int_{\Theta_{1}} f(\theta) d \theta=\alpha \\
& \Rightarrow \int_{0}^{\hat{\theta}} f(\theta) d \theta=\alpha \\
& \Rightarrow F(\hat{\theta})=\alpha \\
& \Rightarrow F\left(\frac{2 a+\alpha}{2 a+\alpha+1}\right)=\alpha
\end{aligned}
$$

Let $G(\alpha)=F\left(\frac{2 a+\alpha}{2 a+\alpha+1}\right)$:
G is continuous since is composite of continuous functions on $\alpha \in[0,1]$.
The support is $[0,1]$, compact convex,
Apply Brower fixed point theorem:

$$
\exists \alpha^{\star} \text { such that } G\left(\alpha^{\star}\right)=\alpha^{\star}
$$

2 Question 2

(Comprehensive Exam June 2007 Q3)

2.1 Part a

Let allocations be functions $x:[0,1] \rightarrow \mathbb{R}_{+}$and $y:[0,1] \rightarrow \mathbb{R}_{+}$
Pareto Efficient allocation requires:

1. Individual feasibility:

$$
x(\theta) \geq 0 \text { and } y(\theta) \geq 0 \text { for } \theta \in[0,1]
$$

2. Aggregate feasibility:

$$
\begin{aligned}
& \int_{0}^{1} x(\theta)=1 \\
& \int_{0}^{1} y(\theta)=z
\end{aligned}
$$

3. Optimality:

There does not exist (\tilde{x}, \tilde{y}) such that:

$$
(\tilde{x}(\theta), \tilde{y}(\theta)) \succsim_{\theta}(x(\theta), y(\theta) \text { for } \theta \in[0,1]
$$

with strict inequality on some non-empty open interval $(a, b) \in[0,1]$.

2.2 Part b

Walrasian Equilibrium requires:

1. Consumers maximize utility:

$$
\max _{x(\theta), y(\theta)} x(\theta)^{\theta} y(\theta)^{1-\theta} \text { such that } p_{x} x(\theta)+p_{y} y(\theta)=p_{x}+p_{y} z \text { for } \theta \in[0,1]
$$

2. Markets clear:

$$
\begin{aligned}
& \int_{0}^{1} x(\theta)=1 \\
& \int_{0}^{1} y(\theta)=z
\end{aligned}
$$

2.3 Part c

Normalize $p_{y}=1$, then

$$
\begin{aligned}
& x(\theta)=\theta \frac{p_{x}+z}{p_{x}} \\
& y(\theta)=(1-\theta)\left(p_{x}+z\right)
\end{aligned}
$$

Check X market clearing:

$$
\begin{aligned}
& \int_{0}^{1} \theta \frac{p_{x}+z}{p_{x}}=1 \\
& \Rightarrow \frac{1}{2} \frac{p_{x}+z}{p_{x}}=1 \\
& \Rightarrow p_{x}=z
\end{aligned}
$$

Or check Y market clearing:

$$
\begin{aligned}
& \int_{0}^{1}(1-\theta)\left(p_{x}+z\right)=z \\
& \Rightarrow \frac{1}{2}\left(p_{x}+z\right)=z \\
& \Rightarrow p_{x}=z
\end{aligned}
$$

Therefore, WE has allocations:

$$
\begin{aligned}
& x(\theta)=\theta \frac{z+z}{z}=2 \theta \\
& y(\theta)=(1-\theta)(z+z)=(1-\theta) 2 z
\end{aligned}
$$

3 Question 3

(Comprehensive Exam June 2007 Q4)

3.1 Part a

Walrasian Equilibrium requires:

1. Consumers maximize utility:

$$
\begin{aligned}
& \max _{x_{A}, y_{A}} \min \left\{2 x_{A}, y_{A}\right\} \text { such that } p_{x} x_{A}+p_{y} y_{A}=p_{x}+p_{y} \\
& \max _{x_{B}, y_{B}} \min \left\{x_{B}, 2 y_{B}\right\} \text { such that } p_{x} x_{B}+p_{y} y_{B}=p_{x}+p_{y} \\
& \max _{x_{C}, y_{C}} \min \left\{2 x_{C}, y_{C}\right\} \text { such that } p_{x} x_{C}+p_{y} y_{C}=p_{x}+p_{y}
\end{aligned}
$$

2. Markets clear:

$$
\begin{array}{r}
x_{A}+x_{B}+x_{C}=3 \\
y_{A}+y_{B}+y_{C}=3
\end{array}
$$

Maybe not normalize $p_{y}=1$ this time:

$$
\text { set } 2 x_{A}=y_{A} \text { and } x_{B}=2 y_{B} \text { and } 2 x_{C}=y_{C}
$$

Substitute them into the budget constraints:

$$
\begin{aligned}
x_{A} & =\frac{p_{x}+p_{y}}{p_{x}+2 p_{y}} \\
y_{A} & =\frac{2\left(p_{x}+p_{y}\right)}{p_{x}+2 p_{y}} \\
x_{B} & =\frac{2\left(p_{x}+p_{y}\right)}{2 p_{x}+p_{y}} \\
y_{B} & =\frac{p_{x}+p_{y}}{2 p_{x}+p_{y}} \\
x_{C} & =\frac{p_{x}+p_{y}}{p_{x}+2 p_{y}} \\
y_{C} & =\frac{2\left(p_{x}+p_{y}\right)}{p_{x}+2 p_{y}}
\end{aligned}
$$

Check X market clearing:

$$
\begin{aligned}
& \frac{p_{x}+p_{y}}{p_{x}+2 p_{y}}+\frac{2\left(p_{x}+p_{y}\right)}{2 p_{x}+p_{y}}+\frac{p_{x}+p_{y}}{p_{x}+2 p_{y}}=3 \\
& \Rightarrow \frac{2 p_{y}}{p_{x}+2 p_{y}}=\frac{p_{y}}{2 p_{x}+p_{y}} \\
& \Rightarrow p_{y}=0 \text { or } 4 p_{x}+2 p_{y}=p_{x}+2 p_{y} \\
& \Rightarrow p_{y}=0 \text { or } p_{x}=0
\end{aligned}
$$

AND check Y market clearing:

$$
\begin{aligned}
& \frac{2\left(p_{x}+p_{y}\right)}{p_{x}+2 p_{y}}+\frac{p_{x}+p_{y}}{2 p_{x}+p_{y}}+\frac{2\left(p_{x}+p_{y}\right)}{p_{x}+2 p_{y}}=3 \\
& \Rightarrow \frac{2 p_{x}}{p_{x}+2 p_{y}}=\frac{p_{x}}{p_{x}+2 p_{y}} \\
& \Rightarrow p_{x}=0 \text { or } 2 p_{x}+4 p_{y}=p_{x}+2 p_{y} \\
& \Rightarrow p_{x}=0
\end{aligned}
$$

Note that $p_{y}=0$ is NOT a solution here.
Therefore, WE has allocations:

$$
\begin{aligned}
& x_{A}=\frac{1}{2}, x_{B}=2, x_{C}=\frac{1}{2} \\
& y_{A}=1, y_{B}=1, y_{C}=1
\end{aligned}
$$

3.2 Part b

Core allocation requires:

$$
\begin{aligned}
& \min \left\{2 \cdot \frac{1+\varepsilon}{2}, 1+\varepsilon\right\} \geq \min \left\{2 x_{A}, y_{A}\right\} \\
& \min \{2-\varepsilon, 2 \cdot(1-2 \varepsilon)) \geq \min \left\{x_{B}, 2 y_{B}\right\} \\
& \min \left\{2 \cdot \frac{1+\varepsilon}{2}, 1+\varepsilon\right\} \geq \min \left\{2 x_{C}, y_{C}\right\}
\end{aligned}
$$

1. Not blocked by $\{A\},\{B\},\{C\}$:

$$
\begin{aligned}
& x_{A}=y_{A}=1 \\
& x_{B}=y_{B}=1 \\
& x_{C}=y_{C}=1
\end{aligned}
$$

2. Not blocked by $\{A, B\},\{A, C\},\{B, C\}$:

$$
\begin{aligned}
& x_{A}+x_{B}=y_{A}+y_{B}=2 \\
& x_{A}+x_{C}=y_{A}+y_{C}=2 \\
& x_{B}+x_{C}=y_{B}+y_{C}=2
\end{aligned}
$$

3. Not blocked by $\{A, B, C\}$:

$$
x_{A}+x_{B}+x_{C}=y_{A}+y_{B}+y_{C}=3
$$

First simplify the conditions:

$$
\begin{aligned}
1+\varepsilon & \geq \min \left\{2 x_{A}, y_{A}\right\} \\
2-4 \varepsilon & \geq \min \left\{x_{B}, 2 y_{B}\right\} \text { this assumes } \varepsilon \geq 0 \\
1+\varepsilon & \geq \min \left\{2 x_{C}, y_{C}\right\}
\end{aligned}
$$

One person coalition:

$$
\begin{aligned}
& 1+\varepsilon \geq 1 \text { and } 2-4 \varepsilon \geq 1 \\
& \Rightarrow 0 \leq \varepsilon \leq \frac{1}{4}
\end{aligned}
$$

Two people coalition:

$$
\begin{aligned}
& 2-4 \varepsilon \geq \min \left\{2-\frac{1+\varepsilon}{2}, 2 \cdot(2-(1+\varepsilon))\right\} \\
& \Rightarrow 2-4 \varepsilon \geq \min \left\{\frac{3}{2}-\frac{\varepsilon}{2}, 2-2 \varepsilon\right\} \\
& \Rightarrow 2-4 \varepsilon \geq \frac{3}{2}-\frac{\varepsilon}{2}\left(\text { since } \varepsilon \leq \frac{1}{4}\right) \\
& \Rightarrow \frac{1}{2} \geq \frac{7}{2} \varepsilon \\
& \Rightarrow \varepsilon \leq \frac{1}{7}
\end{aligned}
$$

Three people coalition:
It is Pareto optimal.
Therefore, any $\varepsilon \in\left[0, \frac{1}{7}\right]$ implies the allocation is in the Core.

4 Question 4

(Comprehensive Exam August 2008 Q4)

4.1 Part a

Let c_{a}^{b} represent the a-th period consumption of consumer b.
Core allocation requires:

1. Not blocked by $\{1\},\{2\}, \ldots,\{N\}$:

$$
\begin{aligned}
\log \left(c_{n}^{n}\right)+\log \left(c_{n+1}^{n}\right) & \geq \log (\theta)+\log \left(\theta^{\prime}\right) \text { for } n>0 \\
\log \left(c_{1}^{0}\right) & \geq \log \left(\theta^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& c_{N+1}^{N} \leq \theta^{\prime} \Rightarrow c_{N}^{N}<\theta \text { are blocked by }\{N\} \\
& \Rightarrow c_{N}^{N} \geq \theta \Rightarrow c_{N}^{N-1} \leq \theta^{\prime} \Rightarrow c_{N-1}^{N-1}<\theta \text { are blocked by }\{N-1\} \\
& \Rightarrow c_{N-1}^{N-1} \geq \theta \Rightarrow c_{N-1}^{N-2} \leq \theta^{\prime} \Rightarrow c_{N-2}^{N-2}<\theta \text { are blocked by }\{N-2\} \\
& \Rightarrow \ldots \\
& \Rightarrow c_{2}^{2} \geq \theta \Rightarrow c_{2}^{1} \leq \theta^{\prime} \Rightarrow c_{1}^{1}<\theta \text { are blocked by }\{1\}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& c_{1}^{0}<\theta^{\prime} \text { are blocked by }\{0\} \\
& \Rightarrow c_{1}^{1} \leq \theta \Rightarrow c_{1}^{1}=\theta \Rightarrow c_{2}^{1}<\theta^{\prime} \text { are blocked by }\{1\} \Rightarrow c_{2}^{1}=\theta^{\prime} \\
& \Rightarrow c_{2}^{2} \leq \theta \Rightarrow c_{2}^{2}=\theta \Rightarrow c_{3}^{2}<\theta^{\prime} \text { are blocked by }\{2\} \Rightarrow c_{3}^{2}=\theta^{\prime} \\
& \Rightarrow \ldots \\
& \Rightarrow c_{N}^{N}=\theta
\end{aligned}
$$

Therefore, only consuming endowment is in the Core.

4.2 Part b

Walrasian equilibrium requires:

1. Consumers maximize utility:

$$
\begin{aligned}
& \max _{c_{n}^{m}, c_{n+1}^{x}}^{\operatorname{x}} \log \left(c_{n}^{n}\right)+\log \left(c_{n+1}^{n}\right) \text { such that } . p_{n} c_{n}^{n}+p_{n+1} c_{n+1}^{n}=p_{n} \theta+p_{n+1} \theta^{\prime} \\
& \max _{c_{1}^{0}} \log \left(c_{1}^{0}\right) \text { such that } p_{0} c_{1}^{0}=p_{0} \theta^{\prime}
\end{aligned}
$$

2. Markets clear:

$$
\begin{aligned}
c_{n}^{n-1}+c_{n}^{n} & =\theta+\theta^{\prime} \\
c_{N+1}^{N} & =\theta^{\prime}
\end{aligned}
$$

Consider any sequence of prices $\left\{p_{n}\right\}_{n=0}^{N}$:
Start from consumer 0, her budget constraint implies:

$$
c_{1}^{0}=\theta^{\prime}
$$

Then market clearing condition of c_{1} implies:

$$
c_{1}^{1}=\theta+\theta^{\prime}-c_{1}^{0}=\theta+\theta^{\prime}-\theta^{\prime}=\theta
$$

Then consumer 1's budget constraint implies:

$$
c_{2}^{1}=\theta^{\prime}
$$

Then market clearing condition of c_{2} implies:

$$
\begin{aligned}
& c_{2}^{2}=\theta+\theta^{\prime}-c_{2}^{1}=\theta+\theta^{\prime}-\theta^{\prime}=\theta \\
& \ldots \\
& c_{N}^{N}=\theta \\
& c_{N+1}^{N}=\theta^{\prime}
\end{aligned}
$$

4.3 Part c

The argument in Part b is forward induction. Therefore it applies to $N \rightarrow \infty$.

4.4 Part d

The argument in Part a is backward induction. Therefore it does not apply.
Consider a coalition of $\{0,1,2, \ldots\}$:
The allocation with:

$$
c_{n}^{n}=c_{n}^{n-1}=\frac{\theta+\theta^{\prime}}{2} \text { for } n \geq 0
$$

is preferred by all consumers since:

$$
\begin{aligned}
\log \left(\frac{\theta+\theta^{\prime}}{2}\right) & >\log \left(\theta^{\prime}\right) \text { for consumer } 0 \\
2 \log \left(\frac{\theta+\theta^{\prime}}{2}\right) & >\log (\theta)+\log \left(\theta^{\prime}\right) \text { for consumers } n>0
\end{aligned}
$$

by concavity of log.

5 Question 5

(Comprehensive Exam June 2004 Q4)

5.1 Part a

Z is blocked by coalition $\left\{A_{1}, A_{2}, B_{1}\right\}$, need to check:

$$
\begin{aligned}
& u_{A 1}\left(x_{A 1}, y_{A 1}\right) \geq u_{A 1}\left(Z_{A}^{x}, Z_{A}^{y}\right) \\
& u_{A 2}\left(x_{A 2}, y_{A 2}\right) \geq u_{A 2}\left(Z_{A}^{x}, Z_{A}^{y}\right) \\
& u_{B 1}\left(x_{B 1}, y_{B 1}\right) \geq u_{B 1}\left(Z_{B}^{x}, Z_{B}^{y}\right)
\end{aligned}
$$

with

$$
\begin{gathered}
x_{A 1}+x_{A 2}+x_{B 1}=2 \omega_{A}^{x}+\omega_{B}^{x} \\
y_{A 1}+y_{A 2}+y_{B 1}=2 \omega_{A}^{y}+\omega_{B}^{y}
\end{gathered}
$$

Consider:

$$
\begin{aligned}
& x_{A 1}=x_{A 2}=\frac{1}{2}\left(\omega_{A}^{x}+Z_{A}^{x}\right) \\
& y_{A 1}=y_{A 2}=\frac{1}{2}\left(\omega_{A}^{y}+Z_{A}^{y}\right) \\
& x_{B 1}=Z_{B}^{x} \\
& y_{B 1}=Z_{B}^{y}
\end{aligned}
$$

where
$\left(x_{A 1}, y_{A 1}\right)$ and $\left(x_{A 2}, y_{A 2}\right)$ are located at the midpoint between ω and Z (between Z and B), strictly preferred for A1 and A2.
$\left(x_{B 1}, y_{B 1}\right)$ is located at Z, indifferent for B1.
and

$$
\begin{aligned}
& x_{A 1}+x_{A 2}+x_{B 1} \\
& =\omega_{A}^{x}+Z_{A}^{x}+Z_{B}^{x} \\
& =\omega_{A}^{x}+\omega_{A}^{x}+\omega_{B}^{x} \\
& y_{A 1}+y_{A 2}+y_{B 1} \\
& =\omega_{A}^{y}+Z_{A}^{y}+Z_{B}^{y}
\end{aligned}
$$

5.2 Part b

Suppose there are N players of each type, then:
Z is blocked by coalition $\left\{A_{1}, A_{2}, \ldots, A_{N}, B_{1}, B_{2}, \ldots, B_{N-1}\right\}$, need to check:

$$
\begin{aligned}
u_{A i}\left(x_{A i}, y_{A i}\right) & \geq u_{A i}\left(Z_{A}^{x}, Z_{A}^{y}\right) \text { for } i \in\{1,2, \ldots, N\} \\
u_{B j}\left(x_{B j}, y_{B j}\right) & \geq u_{B j}\left(Z_{B}^{x}, Z_{B}^{y}\right) \text { for } j \in\{1,2, \ldots, N-1\}
\end{aligned}
$$

with

$$
\begin{aligned}
& \sum_{i=1}^{N} x_{A i}+\sum_{j=1}^{N-1} x_{B j}=N \omega_{A}^{x}+(N-1) \omega_{B}^{x} \\
& \sum_{i=1}^{N} y_{A i}+\sum_{j=1}^{N-1} y_{B j}=N \omega_{A}^{y}+(N-1) \omega_{B}^{y}
\end{aligned}
$$

Consider:

$$
\begin{aligned}
& x_{A i}=\frac{1}{N} \omega_{A}^{x}+\frac{N-1}{N} Z_{A}^{x} \text { and } \\
& y_{A i}=\frac{1}{N} \omega_{A}^{y}+\frac{N-1}{N} Z_{A}^{y} \text { for } i \in\{1,2, \ldots, N\} \\
& x_{B j}=Z_{B}^{x} \text { and } \\
& y_{B j}=Z_{B}^{y} \text { for } j \in\{1,2, \ldots, N-1\}
\end{aligned}
$$

where
$\left(x_{A i}, y_{A j}\right) \mathrm{s}$ are located at some point between ω and Z for large N (between Z and B), strictly preferred for A_{i}.
$\left(x_{B j}, y_{B j}\right)$ is located at Z, indifferent for Bj .
and

$$
\begin{aligned}
& \sum_{i=1}^{N} x_{A i}+\sum_{j=1}^{N-1} x_{B j} \\
& =\omega_{A}^{x}+(N-1)\left(Z_{A}^{x}+Z_{B}^{x}\right) \\
& =\omega_{A}^{x}+(N-1)\left(\omega_{A}^{x}+\omega_{B}^{x}\right) \\
& =N \omega_{A}^{x}+(N-1) \omega_{B}^{x} \\
& \sum_{i=1}^{N} y_{A i}+\sum_{j=1}^{N-1} y_{B j} \\
& =\omega_{A}^{y}+(N-1)\left(Z_{A}^{y}+Z_{B}^{y}\right) \\
& =\omega_{A}^{y}+(N-1)\left(\omega_{A}^{y}+\omega_{B}^{y}\right) \\
& =N \omega_{A}^{y}+(N-1) \omega_{B}^{y}
\end{aligned}
$$

