\# Exam 3

Name or ID: \qquad

Question 1

[1 points] Given the following confusion matrix, what is the precision for class Dragon?

Class \backslash Predict	Cat	Dog	Dragon
Cat	40	10	0
Dog	10	20	10
Dragon	0	0	30

$\square 3 / 4$
$\square 1 / 2$
$\square 1$
$\square 1 / 4$

Question 2
\square [1 points] What is matrix. $\operatorname{argmax}(\operatorname{axis}=1)$, where matrix = numpy. $\operatorname{array([[1,~2,~3],~[4,~5,~}$ 6]])?
$\checkmark[2,2]$
$\square[1,1,1]$
$\square[2,2,2]$
\square $[3,3]$

Question 3

[1 points] There are 4 documents, and 3 of these documents contain the token "Groot". In document 1, there are 10 tokens in total, and 5 of them are "Groot". What is the bag of words feature (without normalization) of document 1 feature "Groot"?

5

10

Question 4
[1 points] What is a valid simplification of numpy. linalg. solve ($X, X @ y$), assuming the code runs without error (and numerical instability)?

[1 points] The shape of A is $(3,2)$, the shape of B is $(3,3)$, and the shape of C is $(4,3)$. What is the shape of A @ B @ C?
?
$(3,3)$
$(4,2)$
(Error)
$(2,4)$

Question 6

[1 points] If $x 0$ has two columns, and $x=$ sklearn.preprocessing.PolynomialFeatures(2).fit_transform(x 0) is used as the design matrix, how many weights (include coefficients and biases or intercepts) will a linear regression estimate?

[1 points] af has 10 columns and 5 rows. After applying $p=\operatorname{PCA}(3)$ and p.fi t(df), what is the shape of p. components_? Note: the rows of p. components_ are the principal components.
$(3,10)$
$(3,5)$
$(5,3)$
$(10,3)$

Question 8
[1 points] Given points [[1], [2], [3], [4]] and starting centroids [0] and [7], what are the centroids after the first iteration of assigning points and updating centroids, using the iterative K-Means Clustering algorithm with Manhattan distance?

$[0,7]$
$\square[1,3]$
$[2,4]$
\square [1.5, 3.5]

Question 9

[1 points] The gradient vector dw at [w1, w2, w3, w4] $=[-1,1,2,-2]$ is $[2,-2,-1,1]$, if gradient descent $w=w-$ alpha * dw is used, which variable will increase by the largest amount in the next iteration?

w1

Question 10

[1 points] Suppose $d x y=$ skimage.filters.sobel(img) produces the $d x y$ matrix in the following table. To highlight the edge pixels in the original image in green, image[$\mathrm{dxy}>\mathrm{t}]=[0,255,0]$ is used, and 2 pixels are highlighted. Which value of t is used?

0	0	0	0
0	1	1	0
0	0.5	0.75	0
0	0	0	0

[^0]Question 11
\square [1 points] One-vs-one support vector machines are trained and produce the following the confusion matrix. How many training items are used in training the " 0 vs 2 " support vector machine?

Count	Predict 0	Predict 1	Predict 2
Class 0	10	20	10
Class 1	0	10	0
Class 2	10	0	10

\square
70

6010
\square
40
\square Question 12
[1 points] The 3-fold cross validation accuracy for four different neural networks is summarized below. Which model is the most preferred one based on cross validation accuracy?

Network	Fold 1 accuracy	Fold 2 accuracy	Fold 3 accuracy
W	0.5	0.5	0.5
X	0.6	0.8	1
Y	0.7	0.8	0.9
Z	0.8	0.8	0.8

$\square \mathrm{W}$
Z
[1 points] What is the optimal solution [x1, x2] to the linear program max x1 + 2 * x2 subject to x1 $+\mathrm{x} 2<=1$ and $\mathrm{x} 1>=0 \times 2>=0$?
\square $[1,1]$
\square $[0,0]$
$[1,0]$
$[0,1]$

Question 14

[1 points] Suppose the standard form of a linear program max c @ x subject to A @ x <= band x$\rangle=$ 0 has len $(c)=5, A$. shape $=(3,5)$, and $\operatorname{len}(b)=3$. What is the number of dual variables len (y) ? Note: the dual problem is min b @ y subject to A ' @ $y>=c$ and $y>=0$ where ' means transpose.

1
$\checkmark 3$
15
\square
5
[1 points] Suppose all the random vectors generated from a multivariate normal distribution are on the same line, using numpy. random.multivariate_normal([0, 0], [[1, c], [c, 4]], 1000). What is the value of c ?

0

Question 16
[1 points] Consider a Markov chain with the following transition matrix with three states [0, 1,2]. What is the probability a sequence $[0,0,2]$ is observed (given it starts with 0)?

| From \backslash To | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 |
| 1 | 0 | 0.5 | 0.5 |
| 2 | 0.5 | 0 | 0.5 |

\square 0.25
0.5

Question 17

[1 points] For a logistic regression $1 r$, if $1 r$.predict_proba(x) for some item x is $[0.3,0.5,0.2$], what is lr.predict (x) for the same x ?

1

Question 18
[1 points] What is the complete linkage Manhattan distance between c1 = [[5], [4], [0]] and c2 = [[2], [1]]? Note: c1 is a cluster with 3 points and c2 is a cluster with 2 points.
\square
2
\square
3
1
4

Question 19

[1 points] Given the principal components $u 1=[0,0,1], u 2=[1,0,0], u 3=[0,1,0]$, and the PCA (principal component analysis) features of an item x is $y=[-1,0,1]$, what is x ?$[-1,0,1]$
$[1,1,1]$
$[0,1,-1]$
$\square[1,0,-1]$

Question 20
[1 points] If you think any of the questions are not clear or incorrect, please explain here; otherwise, enter "none". Please do not leave the answer blank:
none

END OF EXAM

Last Updated: December 18, 2023 at 9:30 PM

UNIVERSITY OF WISCONSIN-MADISON

Powered by w3.css

[^0]: 0.8
 $\square 0.25$
 \square
 \square 0.7

