# CS368 MATLAB Programming <br> Lecture 12 

## Young Wu

Based on lecture slides by Michael O'Neill and Beck Hasti
April 20, 2022

## Debugger, Strange Bug 1

## Quiz

(1) $x=0 ; y=0.3 ; z=0$;
(2) for $t=1: 5$
(3) $x=x+0.1$;
(1) if $x==y$
(6) $z=x$;
(0) end
(1) end
(3) $z$

- A: 0
- B: 0.3
- C: 0.5


## Debugger, Strange Bug 2 <br> Quiz

(1) $q=1$;
(2) for $i=1: 2$
(3) $q=q * 2 i$;
(9) end
(6) $q$

- $A:-4$
- $B: 1$
- C: 8


## Grades

Admin

- P4 to P6 code check tonight or tomorrow.
- Check your Canvas grades to make sure they are correct.
- Credit if grade $\geqslant 75$, no curve.
- If your current grade on Canvas in less than 50, email me.


## Numerical Differentiation <br> Math

- Derivatives can be approximated using Newton's formula,

$$
\frac{d f}{d x} \approx \frac{f(x+h)-f(x)}{h}
$$

for some small $h$ close to 0 .

- The derivative of $f$ at $x$ is usually approximated by,

$$
\frac{d f}{d x} \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

## Numerical Differentiation Diagram

Math

## Finite Differences

Math

- There are more accurate approximations using finite differences, for example,

$$
\frac{d f}{d x} \approx \frac{-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h)}{12 h},
$$

for some small $h$ close to 0 .

## Partial Derivatives

Math

- Partial derivatives of a multivariate function are derivatives with respect to one of the variables holding the other variables constant.

$$
\begin{aligned}
& \frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+h, y)-f(x-h, y)}{2 h} \\
& \frac{\partial f(x, y)}{\partial y} \approx \frac{f(x, y+h)-f(x, y-h)}{2 h}
\end{aligned}
$$

## Partial Derivatives Too

## Math

- Higher order derivatives can be approximated in a similar way,

$$
\begin{aligned}
& \frac{\partial^{2} f(x, y)}{\partial x^{2}} \approx \frac{f(x+h, y)-2 f(x, y)+f(x-h, y)}{h^{2}} . \\
& \frac{\partial^{2} f(x, y)}{\partial y^{2}} \approx \frac{f(x, y+h)-2 f(x, y)+f(x, y-h)}{h^{2}} .
\end{aligned}
$$

and,

$$
\begin{aligned}
\frac{\partial f(x, y)}{\partial x \partial y} & \approx \frac{f(x+h, y+h)+f(x-h, y-h)}{4 h^{2}} \\
& -\frac{f(x+h, y-h)+f(x-h, y+h)}{4 h^{2}}
\end{aligned}
$$

## Gradient

Math

- The gradient of a multivariate function is the vector of (partial) derivatives, one for each variable.

$$
\nabla f(x, y)=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]
$$

## Derivative

Quiz

- $\left.\frac{d}{d x} x^{2}\right|_{x=2}=4$
(1) $f=@(x)\left(x .^{\wedge} 2\right) ; z=2 ; h=0.0001$;
- $B:(f(z+h)-f(z-h)) /(2 * h)$
- $C:(f(z+h)+f(z-h)) /(2 * h)$


## Gradient

## Quiz

- $\left.\frac{\partial}{\partial x_{2}}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\right|_{x=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=4}$
(1) $f=@(x)\left(\operatorname{sum}\left(x .{ }^{\wedge} 2\right)\right) ; z=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] ; h=0.0001$;
- $B:(f(z+h)-f(z-h)) /(2 * h)$
- $C:\left(f\left(z+\left[\begin{array}{ll}0 & h\end{array}\right]\right)-f\left(z-\left[\begin{array}{ll}0 & h\end{array}\right]\right)\right) /(2 * h)$


## Derivative as a Function

Code

- It is possible to compute the numerical derivative as a function (a MATLAB function, not a closed form expression of the function).
(1) function $d=d f(f)$
(2) $h=0.0001$;
(3) $d=\mathbb{C}(x)((f(x+h)-f(x-h)) /(2 * h))$;
(9) end


## Automatic Differentiation

Code

- diff $(y)$ computes the difference between consecutive elements of $y$ and returns ( $y_{2}-y_{1}, y_{3}-y_{2}, \ldots, y_{n}-y_{n-1}$ ) and can be used to approximate the derivative of the discretized function $y=f(x)$.
- diff $(f)$ computes the derivative of $f$ and returns a function. It requires MATLAB's Symbolic Math Toolbox.


## Numerical Integration or Quadrature <br> Math

- Definite integrals can be approximated using finite Riemann sums.
- If the right Riemann sum is used, then,

$$
\int_{x_{0}}^{x_{1}} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{0}+i \cdot h\right) h,
$$

for $h=\frac{x_{1}-x_{0}}{n}$, for some large $n$.

- If the left Riemann sum is used, then,

$$
\int_{x_{0}}^{x_{1}} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{0}+(i-1) \cdot h\right) h
$$

for $h=\frac{x_{1}-x_{0}}{n}$, for some large $n$.

## Numerical Integration Diagram

Math

## Midpoint Rule

- If the midpoint rule is used, then,

$$
\int_{x_{0}}^{x_{1}} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{0}+(i-0.5) \cdot h\right) h
$$

for $h=\frac{x_{1}-x_{0}}{n}$, for some large $n$.

- If the trapezoidal rule is used, then,

$$
\int_{x_{0}}^{x_{1}} f(x) d x \approx \sum_{i=1}^{n} \frac{1}{2}\left(f\left(x_{0}+i \cdot h\right)+f\left(x_{0}+(i-1) \cdot h\right)\right) h
$$

for $h=\frac{x_{1}-x_{0}}{n}$, for some large $n$.

## Adaptive and Monte Carlo <br> Math

- The points at which the function is evaluated can be chosen adaptively or randomly.
- For example, smaller $h$ can be used when $f^{\prime}(x)$ is large and larger $h$ can be used when $f^{\prime}(x)$ is small.


## Double Integral

## Math

- Finite Riemann sums can be used to approximate multiple integrals too.

$$
\begin{aligned}
& \int_{x_{0}}^{x_{1}} \int_{y_{0}}^{y_{1}} f(x, y) d x d y \\
& \approx \sum_{i=1}^{n} \sum_{j=1}^{m} f\left(x_{0}+(i-0.5) \cdot h, y_{0}+(j-0.5) \cdot k\right) \cdot h k,
\end{aligned}
$$

for $h=\frac{x_{1}-x_{0}}{n}, k=\frac{y_{1}-y_{0}}{m}$, for some large $n, m$.

- If $n \times m$ is too large, sometimes, Monte Carlo methods are used instead.


## Indefinite Integral as a Function

## Code

- It is possible to compute the numerical integral as a function (a MATLAB function, not a closed form expression of the function). Instead of having the $+C$ at the end, an arbitrary constant is used.
(1) function $d=d f(f)$
(2) $h=0.01$;
(3) $d=@(x)(\operatorname{sum}(f(h: h: x)) * h)$;
(9) end
- This approximation uses the right Riemann sum and it does not work on improper integrals.


## Integration

## Code

- integral ( $f, x 0, x 1$ ) finds the numerical definite integral $\int_{x_{0}}^{x_{1}} f(x) d x$.
- int $(f)$ finds the indefinite integral of $f$ and returns a function. It requires MATLAB's Symbolic Math Toolbox.


# Integral 

## Quiz

- $\int_{0}^{1} x^{2}=0.3333$
(1) $f=@(x)\left(x .^{\wedge} 2\right)$;
- $C: \operatorname{sum}(f(0: 0.01: 1)) * 0.01$
- $D: \operatorname{sum}(f(0.005: 0.01: 0.995)) * 0.01$


## Improper Integral

Quiz

- $\int_{1}^{\infty} \frac{1}{x^{2}} d x=1$
(1) $f=@(x)\left(x \cdot{ }^{\wedge}-2\right)$;
- $C: x=1.5: 1: 999.5 ; \operatorname{sum}(f(x)) * 1$
- $D: x=0.005: 0.01: 0.995$;
- $\operatorname{sum}\left(f(1 . /(1-x))\right.$.* $\left.(1-x) \wedge^{\wedge}-2\right) * 0.01$


## Double Integral

## Quiz

- $\int_{0}^{1} \int_{0}^{1} x y d x d y=0.25$
(1) $f=@(x, y)(x . * y)$;
- $C: x=0.05: 0.01: 0.995 ; \quad y=0.05: 0.01: 0.995$;
- $D:[x, y]=$ meshgrid (0.05:0.01:0.995, 0.05:0.01:0.995);
(3) $\operatorname{sum}(\operatorname{sum}(f(x, y))) * 0.01 * 0.01$


## Blank Slide

