CS368 MATLAB Programming Lecture 13

Young Wu

Based on lecture slides by Michael O'Neill and Beck Hasti

April 27, 2022

Algebraic Equations

 An algebraic equation, also called a polynomial equation, are ones in the form,

$$\sum_{i=0}^{n} a_i x^i = 0.$$

- Root finding is the process of numerically finding one or all x's that satisfy the above equation.
- There are in general *n* solutions or roots (possibly complex or repeated) to the above equation.

Non-linear Equations

- In general, non-linear equations in the form f(x) = 0 are solved using iterative methods.
- Start with a random guess x_0 , and compute a sequence $x_1, x_2, ...$ with the property that $x^* = \lim_{n \to \infty} x_i$ satisfies $f(x^*) = 0$.

Optimization Math

- Optimization problems are often solved by finding the roots to the first derivative condition (or gradient condition when there are multiple variables).
- To find the maximum or minimum value of a continuous and differentiable function f(x) in an interval $[\underline{x}, \overline{x}]$, find the roots of f'(x) = 0, say $x_1, x_2, ..., x_n$, then find the maximum or minimum among f(x), $f(\overline{x})$, $f(x_1)$, $f(x_2)$, ..., $f(x_n)$.

Intermediate Value Theorem

- Intermediate Value Theorem says given a continuous function f, for any u between f(a) and f(b), there exists an $x \in [a, b]$ such that f(x) = u.
- IVT implies that if $f(a) \ge 0$ and $f(b) \le 0$, then there exists an $x \in [a, b]$ such that f(x) = 0.
- Bisection method uses this observation to iteratively reduce the interval [a, b] that contains the root by a half until a and b are close enough.

Intermediate Value Theorem Diagram

Search Math

- Bisection method can be used to find a root of f(x) = 0 in an interval $x \in [x_0, x_1]$.
- Start with $[x_0, x_1]$ and $x = \frac{1}{2}(x_0 + x_1)$.
- ② If f(x) and $f(x_0)$ has different signs, the solution is between x_0 and x, use bisection method on $[x_0, x]$.
- **③** If f(x) and $f(x_1)$ has different signs, the solution is between x and x_1 , use bisection method on $[x, x_1]$.
- Stop when f(x) = 0 or x_0 and x_1 are close enough.

Bisection Diagram

Search Code

- Code for bisection search.
- function x = bisection(f, x0, x1)
- 2 x = 0.5 * (x0 + x1); % Find midpoint.
- if x1 x0 < 0.0001 % Solution is close to x.
- 4 return
- elseif f(x0) * f(x) <= 0 % Solution is in $[x_0, x]$.
- else % Solution is in $[x, x_1]$.
- end
- end

Newton's Method

- Newton's method can be used to find a root of f(x) = 0, given f'(x), starting from initial guess x_0 , preferably close to the solution.
- Start with the initial guess $x = x_0$.
- **2** Repeat using Newton's formula $x = x \frac{f(x)}{f'(x)}$.
- 3 Stop when f(x) is close enough to 0 (or the number of iterations is too large).

Newton's Method Diagram

Newton's Method

- Code for Newton's Method
- function x = newton(f, fp, x0)
- *if* abs(f(x0)) < 0.0001 % Solution is close to x_0
- 3 x = x0;
- else % Newton's update
- **3** x = newton(f, fp, x0 f(x0) / fp(x0));
- 6 end
- end

Non-Convergence

- Newton's method could get stuck when f'(x) = 0.
- In that case, start with a different random initial guess.
- Newton's method could also diverge around an unstable root.
- In that case, a variation of Newton's method need to be used.

Secant Method

- Secant method is used instead of Newton's method when the derivative function is unknown or costly to compete.
- Two initial guesses are required, x_0 and x_1 , and the Newton's update is replaced by

$$x = x - \frac{f(x)}{\frac{f(x) - f(x')}{x - x'}} = \frac{x'f(x) - xf(x')}{f(x) - f(x')}, \text{ where } x' \text{ is the } x$$

in the previous iteration.

Secant Method Diagram

Secant Method

- Code for Newton's Method
- function x = secant(f, x1, x0)
- 2 if abs(f(x1)) < 0.0001 % Solution is close to x_1
- else % Secant update

- end
- end

Comparison with Newton's Method

- Secant method is not the same as Netwon's method with the numerical derivative computed using finite differences, but when x and x' are close, a step using Secant method does approximate a step using Newton's method.
- In general, Newton's method usually takes fewer iterations.
- If it is costly to evaluate f'(x), the secant method could be faster than Newton's method.

MATLAB Solver

- fzero(f, [x0, x1]) searches for the solution of f(x) = 0 between x_0 and x_1 , assuming $f(x_0) f(x_1) \le 0$.
- fzero(f, x0) starts at x_0 and search for the solution of f(x) = 0 using a variation of the secant method.

Extension to System of Equations

• Both Newton's method and Secant method can be extended to solving a system of non-linear equations F(x) = 0. The Jacobian matrix is used in place of the derivative. The updates are given by $x = x - J_F^{-1}(x) F(x)$.

Blank Slide