CS368 MATLAB Programming
 Lecture 1

Young Wu

Based on lecture slides by Michael O'Neill and Beck Hasti
January 24, 2022

Admin

- 00000000

Socrative

Admin

Lecture Format

Admin

- In person and/or on Zoom.
- ~ 20 minutes introduction of the problem.
- ~ 30 minutes examples and quizzes.

Grading

Admin

- Quizzes (Q) : weekly, 2 points each.
- Programming homework (P) : biweekly, 10 points each.
- Credit if $Q+P \geqslant 75$.

Quizzes

Admin

- Obviously incorrect answers will lose points.
- Otherwise not graded for correctness.

Example Quiz Type 1
 Quiz

Example Quiz Type 2 Quiz

Programming Homework

Admin

- Please do not start before announcement on Canvas and Piazza.
- Due dates: biweekly on Wednesday.
- No penalty for late submissions within a week, except you have to submit a regrade request form.
- Submit output on course website.
- Submit code on Canvas.

Programming Homework Due Dates

Admin

- Example solutions will be posted around the due date.
- If you are unable to solve some of the questions correctly before the due date, you can look at the solutions, fix your code and resubmit without penalty.
- Example solutions should not be used as starter code.

Office Hours

Admin

- Daily from 4:35 to 5:25, either in-person or on Zoom, see schedule on course website.
- If you don't have specific questions, you are welcome to join and work with other students on programming homework.
- If you have personal issues to discuss, private message me on Piazza or email me to set up an appointment.

What is MATLAB

Math

- MATrix LABoratory.
- Mainly used for numerical matrix computations.
(1) Numerical: approximation of continuous functions.
(2) Matrix: rectangular 2D array of numbers.

Why MATLAB

Math

- Matrix operations are simple to code.
- Matrix operations are very fast.

How to Open MATLAB

Code

- Download MATLAB or use the online version. There is a mobile app too.
- Command Window executes commands line by line.
- Text Editor creates an m-file script used to store a series of commands or to define functions.
- Current Folder lists the files in the working directory.
- Workspace lists the variables defined in the current session.

MATLAB Variables

Code

- Every variable in MATLAB is a matrix.
- A scalar is a 1×1 matrix.
- A column vector is an $N \times 1$ matrix.
- A row vector is a $1 \times N$ matrix.

Matrix Creation

Code

- $[a ; b]$ creates the matrix (column vector) $\left[\begin{array}{l}a \\ b\end{array}\right]$.
- [a b] or $[a, b]$ creates the matrix (row vector) $\left[\begin{array}{ll}a & b\end{array}\right]$.
- [a $b ; c c c l]$ creates the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
- a, b, c, d can be (sub) matrices themselves.

Vector Creation Shortcuts

Code

- $a: b$ creates the matrix (row vector) $\left[\begin{array}{lllll}a & a+1 & a+2 & \ldots & b\end{array}\right]$
- a:d:b creates the matrix (row vector) $\left[\begin{array}{lllll}a & a+d & a+2 d & \ldots & b\end{array}\right]$.
- If $b \neq a+d n$ for some n, then the list stops at the largest value of $a+d n$ that is less than b.

Matrix Creation Shortcuts

Code

- zeros (n, m) creates an $n \times m$ matrix of 0 s (n rows and m columns).
- ones (n, m) creates an $n \times m$ matrix of $1 s$ (n rows and m columns).
- repmat (x, n, m) repeats the scalar or matrix $x, n \times m$ times.
- eye(n) creates an $n \times n$ identity matrix, for example, $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ when $n=3$.
- $\operatorname{diag}\left(\left[\begin{array}{lll}a & b & c\end{array}\right]\right)$ creates a diagonal matrix $\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$.

Matrix Creation, Vector

Quiz

Matrix Creation, Block Matrix
 Quiz

Matrix Creation, Repeat Matrix Quiz

Transpose

Code

- Transposing a matrix rearranges the elements of the matrix so that columns become rows and rows become columns.
(1) $\left[\begin{array}{llll}a & b ; & c & d\end{array}\right]^{\prime}$ produces the transpose $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{T}=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$.
(2) $\left[\begin{array}{ll}a & b\end{array}\right]^{\prime}$ produces the column vector $\left[\begin{array}{ll}a & b\end{array}\right]^{T}=\left[\begin{array}{l}a \\ b\end{array}\right]$.
(3) $[a ; b]^{\prime}$ produces the row vector $\left[\begin{array}{l}a \\ b\end{array}\right]^{T}=\left[\begin{array}{ll}a & b\end{array}\right]$.

Matrix Scalar Operations

Code

- Suppose M is a matrix and c is a scalar.
- $M+c$ adds c to every element of M, for example, $\operatorname{zeros}(n, m)+1$ produces the same matrix as ones (n, m).
- $M * c$ multiplies c to every element of M, for example, ones $(n, m) * 0$ produces the same matrix as $\operatorname{zeros}(n, m)$.
- More details in the next lecture.

Vector Access

Code

- Suppose M is a row vector.
- If i is a scalar, $M(i)$ accesses the i-th element of M.
- If i is a row vector, $M(i)$ accesses the (sub) vector of M containing elements with indices in i.

Matrix Access

Code

- Suppose M is a matrix.
- If i, j are scalars, $M(i, j)$ accesses row i column j of M.
- If i, j are vectors, $M(i, j)$ accesses the (sub)matrix of M containing rows with indices in i and columns with indices in j.

Matrix Access Shortcuts

Code

- Suppose M is a matrix.
- If i is a scalar, $M(i,:)$ or $M(i, 1$:end $)$ accesses row i of M.
- If i is a vector, $M(i,:)$ or $M(i, 1$:end $)$ accesses the (sub)matrix of M containing rows with indices in i.
- Suppose M is a matrix.
- If j is a scalar, $M(:, j)$ or $M(1: e n d, j)$ accesses column j of M.
- If j is a vector, $M(i, j)$ or $M(1:$ end, $j)$ accesses the (sub)matrix of M containing columns with indices in j.

Matrix Access, Vector

Quiz

Matrix Access, Vector Sequence

Quiz

Matrix Access, Matrix

Quiz

Matrix Access, Matrix Sequence

Blank Slide

