CS368 MATLAB Programming
 Lecture 2

Young Wu

Based on lecture slides by Michael O'Neill and Beck Hasti
January 31, 2022

Scalar Operations, Binary

Code

- $x+y$ is $x+y$.
- $x-y$ is $x-y$.
- $x * y$ is $x y$.
- x / y and $y \backslash x$ are $\frac{x}{y}$.
- $x^{\wedge} y$ is x^{y}.

Scalar Operations, Unary

Code

- $\operatorname{sqrt}(x)$ is \sqrt{x}.
- $\exp (x)$ is e^{x}.
- $\log (x)$ is natural \log or $\ln (x), \log 10(x)$ is $\log _{10}(x)$.
- $\sin (x)$ with x in radians, sind (x) with x in degrees, $\operatorname{asin}(y)$ is $\arcsin (y)$ in radians, asind (x) is $\arcsin (y)$ in degrees.
- $\cos (x), \operatorname{cosd}(x), \operatorname{acos}(y), \operatorname{acosd}(y)$.
- $\tan (x), \operatorname{tand}(x), \operatorname{atan}(y), \operatorname{atand}(y)$.

Scalar Operations, Unary Integer

Code

- round (x) is rounding x to nearest integer.
- floor (x) is $\lfloor x\rfloor$, largest integer $\leqslant x$.
- ceil (x) is $\lceil x\rceil$, smallest integer $\geqslant x$.
- $\bmod (x, y)$ is $x(\bmod y)$, the remainder when x is divided by y, integer division.

Scalar Operations Quiz Questions
 Quiz

Numerical Instability

Code

- The number of decimal places that is displayed can be changed.
- The number of decimal places that can be stored is fixed.
(1) $\pi, e, \sqrt{2}$ etc are approximate values (accurate up to 16 decimal places).
(2) Underflow may occur: numbers that are too close to 0 are stored as 0 .
(3) Overflow may occur: numbers that are too large are stored as Inf .

Vector Multiplication

Math

- $\left[\begin{array}{l}a \\ b\end{array}\right] \odot\left[\begin{array}{l}c \\ d\end{array}\right]=\left[\begin{array}{l}a c \\ b d\end{array}\right]$ is the element-wise product.
- $\left[\begin{array}{l}a \\ b\end{array}\right] \cdot\left[\begin{array}{l}c \\ d\end{array}\right]=\left[\begin{array}{ll}a & b\end{array}\right]\left[\begin{array}{l}c \\ d\end{array}\right]=a c+b d$ is the inner product, also called the dot product for matrices.
- $\left[\begin{array}{l}a \\ b\end{array}\right] \otimes\left[\begin{array}{l}c \\ d\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right]\left[\begin{array}{ll}c & d\end{array}\right]=\left[\begin{array}{ll}a c & a d \\ b c & b d\end{array}\right]$ is the outer product.

Vector Multiplication

Code

- Suppose M and W are two row vectors having the same size.
- M.* W is the element-wise product $M \odot W$.
- $M * W^{\prime}$ and $\operatorname{dot}(M, W)$ are the inner product $M \cdot W=M W^{T}$
- $M^{\prime} * W$ is the outer product $M \otimes W=M^{T} W$.

General Vector Operations

Code

- Suppose M and W are two row vectors having the same size, and c is a scalar.
- $M+W$ and $M-W$ are element-wise and also vector addition and subtraction.
- M . ${ }^{\wedge} W$ and M. ${ }^{\wedge}$ c are element-wise exponentiation.

General Vector Operations, Unary

Code

- Most of the built-in unary operations are element-wise when applied to vectors.
- For example, the square root function can be applied element-wise to vectors directly.
(1) $\operatorname{sqrt}\left(\left[\begin{array}{lll}a & b & c\end{array}\right]\right)$ is $\left[\begin{array}{lll}\sqrt{a} & \sqrt{b} & \sqrt{c}\end{array}\right]$.
(2) $\left[\begin{array}{lll}a & b & c\end{array}\right] \wedge^{\wedge} 0.5$ is also $\left[\begin{array}{lll}\sqrt{a} & \sqrt{b} & \sqrt{c}\end{array}\right]$.
(3) $\left[\begin{array}{lll}a & b & c\end{array}\right]^{\wedge} 0.5$ results in an error.

Vector Operations Quiz Questions

Quiz

Matrix Multiplication

Math

- $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \odot\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a e & b f \\ c g & d h\end{array}\right]$ is the element-wise product.
- $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}e \\ f\end{array}\right]=\left[\begin{array}{l}a e+b f \\ c e+d f\end{array}\right]$ and
$\left[\begin{array}{ll}e & f\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}e a+f c & e b+f d\end{array}\right]$ are matrix products.
- $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right]$ is also the matrix product.

Matrix Multiplication

Code

- Suppose M and W are two matrices.
- M.* W, when M and W have the same size, is the element-wise product $M \odot W$.
- $M * W$, when number of columns of M is the same as the number of rows of W, is the matrix product $M W$.

General Matrix Operations, Binary

Code

- Suppose M and W are two matrices, and c is a scalar.
- $M+W$ and $M-W$ are element-wise and also matrix addition and subtraction.
- M.* W is element-wise, and $M * W$ is matrix multiplication.
- M ./ W and W. $\backslash M$ are element-wise, and M / W and $W \backslash M$ find the matrix X such that $M X=W$, the solution of systems of linear equations. More details in a later lecture.
- M. ${ }^{\wedge} W$ and M. c are element-wise, and $M{ }^{\wedge} c$ is matrix exponentiation.

General Matrix Operations, Unary

Code

- Most of the built-in unary operations are element-wise when applied to matrices.
- For example, the square root function can be applied element-wise to matrices directly.
(1) $\operatorname{sqrt}\left(\left[\begin{array}{llll}a & b ; & c & d\end{array}\right]\right)$ is $\left[\begin{array}{cc}\sqrt{a} & \sqrt{b} \\ \sqrt{c} & \sqrt{d}\end{array}\right]$.
(2) $[a b ; c c d] . \wedge 0.5$ is also $\left[\begin{array}{cc}\sqrt{a} & \sqrt{b} \\ \sqrt{c} & \sqrt{d}\end{array}\right]$.
(3) $[a b ; c d] \wedge 0.5$ is the actual square root of the matrix, it finds a matrix $\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$ such that $\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

Matrix Operations Quiz Questions

Quiz

Blank Slide

