Curves 000000000000 Surfaces

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Scripts 000

CS368 MATLAB Programming Lecture 3

Young Wu

Based on lecture slides by Michael O'Neill and Beck Hasti

February 9, 2022

Curves 00000000000 Surfaces 0000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Scripts 000

Matrix Operations, Multiplication Again

Curves 000000000000 Surfaces

Matrix Operations, Division

Curves •0000000000

Surfaces 0000000 Scripts

Curves Math

- A curve can be the graph of a function described by y = f (x), or the trace of a moving point, in which the movement of the point is described by its position (f_x(t), f_y(t)) at time t.
- A curve is plotted using a large number of line segments.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Curves 0000000000 Surfaces

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Scripts

Function Curves

• To plot y = f(x) from $x = x_1$ to $x = x_n$, find $x_1 < x_2 < x_3 < \ldots < x_n$ and use lines to connect the following points,

 $(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3)), ..., (x_n, f(x_n)).$

Curves 00000000000 Surfaces

Scripts

Parametric Curves

• To plot $(f_x(t), f_y(t))$ from $t = t_1$ to t_n , find $t_1 < t_2 < t_3 < ... < t_n$ and use lines to connect the following points,

 $\left(f_{x}\left(t_{1}\right),f_{y}\left(t_{1}\right)\right),\left(f_{x}\left(t_{2}\right),f_{y}\left(t_{2}\right)\right),\left(f_{x}\left(t_{3}\right),f_{y}\left(t_{3}\right)\right),...,\left(f_{x}\left(t_{n}\right),f_{y}\left(t_{n}\right)\right).$

Curves 00000000000 Surfaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Curve Discretization

- $t_1, t_2, t_3, ..., t_n$ is a partition of the domain $t \in [t_1, t_n]$.
- The partition is usually uniform, meaning $t_i = t_{i-1} + \delta$ with $\delta = \frac{t_n t_1}{n}$ and some large *n*.
- 2 t_i can also be sampled randomly. More details in a later lecture.
- Solution is the chosen according to how fast the function is changing.
- t_i can also be chosen so that the lengths of the line segments are the same.

Curves 00000000000 Surfaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Curve Plotting

- Suppose x, y are vectors of length n.
- plot(x, y) plots line segments connecting $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n).$
- For example, define x = 0:0.01:1 and use plot (x, f(x)) to plot f (x) between 0 and 1 with a partition of size 100.
- Another example, define t = 0:0.01:1 and use $plot(f_x(t), f_y(t))$ to plot $(f_x(t), f_y(t))$ between 0 and 1 with a partition of size 100.

Curves 00000000000 Surfaces

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Scripts

Line Specs

- *plot*(*x*, *y*, *s*) s specifies the style, marker, and color of the lines.
- Line style: '-' solid, '--' dashed, ':' dotted, '-.' dash-dotted.
- Marker: 'o' circle, '.' dot, 'x' cross, 's' square, 'd' diamond ...
- Solor: 'r' red, 'g' green, 'b' blue, 'k' black, 'w' white ...
 - *plot*(*x*1, *y*1, *s*1, *x*2, *y*2, *s*2, ...) plots multiple lines in the same figure.

Curves 000000000000

Surfaces 0000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Scripts 000

Curve Plotting, Square

Curves 000000000000

Surfaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Scripts 000

Curve Plotting, Circle

Curves 000000000000

Surfaces

Curve Plotting, Aliasing Quiz

Curves 00000000000 Surfaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Plotting Features

- Texts can be added to the plot. More details about text manipulation in the next lecture.
- title (t) adds title t.
- xlabel (t) adds x-axis label t.
- ylabel (t) adds y-axis label t.
- legend(c1, c2, ...) adds legend (names of the curves $c_1, c_2, ...$).
- text(x, y, t) adds text t at position (x, y).
- axis ([x0, x1, y0, y1]) changes the range of the axes to $x \in [x_0, x_1]$ and $y \in [y_0, y_1]$.

Curves 0000000000 Surfaces 0000000

3D Curve Plotting

- Suppose x, y, z are vectors of length n.
- plot3(x, y, z, s) plots the lines in 3D connecting $(x_1, y_1, z_1), (x_2, y_2, z_2), ..., (x_n, y_n, z_n)$, with specs s.

Curves 000000000000 Surfaces 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Surfaces Math

- A surface can be a graph of a function described by z = f (x, y), or the trace of a moving point, in which the movement of the point is described by its position (f_x (s, t), f_y (s, t), f_z (s, t)).
- A surface is plotted using a large number of faces, usually triangles, but in MATLAB, four sided polygons.

Curves 00000000000 Surfaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Surface Plotting

- Suppose *x*, *y*, *z* are matrices representing points on the surface.
- contour(x, y, z, n) plots n contours of the surface, and contour3(x, y, z, n) plots them in 3D.
- mesh(x, y, z) plots the surface mesh.
- surf(x, y, z) plots the surface.
- If x and y are omitted, the x and y coordinates are assumed to be the column and row indices of the elements in z.

Curves 000000000000 Surfaces

Scripts 000

Surface Plotting, Pyramid Quiz

Curves 000000000000 Surfaces

Scripts 000

Surface Plotting, Plane Quiz

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Curves 000000000000 Surfaces

Scripts 000

Surface Plotting, Grid

Curves 00000000000 Surfaces

Scripts 000

Surface Plotting, Bowl Quiz

Curves 00000000000 Surfaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Mesh Grid Shortcut

Code

- [x, y] = meshgrid(u, v) creates
 x = repmat(u, [length(v), 1]) and
 y = repmat(v', [1, length(u)]). The matrices x, y then can
 be used to plot the surface z = f (x, y) using
 surf(x, y, f(x, y)).
- [x, y, z] = sphere() and [x, y, z] = cylinder() create meshes of a unit sphere and a unit cylinder. The surface then can be plotted using surf(x, y, z).

Curves 000000000000 Surfaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Scripts •00

Other Plots

• Under "PLOTS" tab, many other plots can be created based on a matrix.

Curves 000000000000

Surfaces 0000000 Scripts

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- . *m* files are MATLAB scripts and can be used to store a list of commands or the definition of a function. More details in the next next lecture.
- The script and its output can be published as a PDF file or an HTML web page.

Curves 0000000000 Surfaces

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Scripts

Blank Slide