CS368 MATLAB Programming

Lecture 3

Young Wu

Based on lecture slides by Michael O’Neill and Beck Hasti

February 9, 2022
Matrix Operations, Multiplication Again

Quiz
Matrix Operations, Division

Quiz
A curve can be the graph of a function described by $y = f(x)$, or the trace of a moving point, in which the movement of the point is described by its position $(f_x(t), f_y(t))$ at time t.

A curve is plotted using a large number of line segments.
To plot $y = f(x)$ from $x = x_1$ to $x = x_n$, find $x_1 < x_2 < x_3 < ... < x_n$ and use lines to connect the following points,

$$(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3)), ..., (x_n, f(x_n)).$$
Parametric Curves

To plot \((f_x(t), f_y(t))\) from \(t = t_1\) to \(t_n\), find \(t_1 < t_2 < t_3 < \ldots < t_n\) and use lines to connect the following points,
\[(f_x(t_1), f_y(t_1)), (f_x(t_2), f_y(t_2)), (f_x(t_3), f_y(t_3)), \ldots, (f_x(t_n), f_y(t_n)).\]
Curve Discretization

Math

- $t_1, t_2, t_3, \ldots, t_n$ is a partition of the domain $t \in [t_1, t_n]$.

1. The partition is usually uniform, meaning $t_i = t_{i-1} + \delta$ with $\delta = \frac{t_n - t_1}{n}$ and some large n.

2. t_i can also be sampled randomly. More details in a later lecture.

3. t_i can also be chosen according to how fast the function is changing.

4. t_i can also be chosen so that the lengths of the line segments are the same.
Curve Plotting

Code

- Suppose x, y are vectors of length n.
 - $\text{plot}(x, y)$ plots line segments connecting $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.

1. For example, define $x = 0:0.01:1$ and use $\text{plot}(x, f(x))$ to plot $f(x)$ between 0 and 1 with a partition of size 100.

2. Another example, define $t = 0:0.01:1$ and use $\text{plot}(fx(t), fy(t))$ to plot $(fx(t), fy(t))$ between 0 and 1 with a partition of size 100.
Line Specs

Code

- \textit{plot}(x, y, s)\ s \textit{specifies the style, marker, and color of the lines.}

1. Line style: ‘—’ solid, ‘——’ dashed, ‘:’ dotted, ‘—.’ dash-dotted.

2. Marker: ‘o’ circle, ‘.’ dot, ‘x’ cross, ‘s’ square, ‘d’ diamond ...

3. Color: ‘r’ red, ‘g’ green, ‘b’ blue, ‘k’ black, ‘w’ white ...

- \textit{plot}(x_1, y_1, s_1, x_2, y_2, s_2, \ldots) \ plots multiple lines in the same figure.
<table>
<thead>
<tr>
<th>Matrix Operations</th>
<th>Curves</th>
<th>Surfaces</th>
<th>Scripts</th>
</tr>
</thead>
<tbody>
<tr>
<td>☀️</td>
<td>☀️</td>
<td>☀️</td>
<td>☀️</td>
</tr>
</tbody>
</table>

Curve Plotting, Square Quiz

Curve Plotting, Circle

Quiz
Curve Plotting, Aliasing

Quiz
Texts can be added to the plot. More details about text manipulation in the next lecture.

- `title(t)` adds title t.
- `xlabel(t)` adds x-axis label t.
- `ylabel(t)` adds y-axis label t.
- `legend(c1, c2, ...)` adds legend (names of the curves c1, c2, ...).
- `text(x, y, t)` adds text t at position (x, y).
- `axis([x0, x1, y0, y1])` changes the range of the axes to \(x \in [x_0, x_1] \) and \(y \in [y_0, y_1] \).
3D Curve Plotting

Code

- Suppose \(x, y, z \) are vectors of length \(n \).
- \(\text{plot3}(x, y, z, s) \) plots the lines in 3D connecting \((x_1, y_1, z_1), (x_2, y_2, z_2), \ldots, (x_n, y_n, z_n)\), with specs \(s \).
A surface can be a graph of a function described by $z = f(x, y)$, or the trace of a moving point, in which the movement of the point is described by its position $(f_x(s, t), f_y(s, t), f_z(s, t))$.

A surface is plotted using a large number of faces, usually triangles, but in MATLAB, four sided polygons.
Surface Plotting

Code

- Suppose x, y, z are matrices representing points on the surface.
- $\text{contour}(x, y, z, n)$ plots n contours of the surface, and $\text{contour3}(x, y, z, n)$ plots them in 3D.
- $\text{mesh}(x, y, z)$ plots the surface mesh.
- $\text{surf}(x, y, z)$ plots the surface.
- If x and y are omitted, the x and y coordinates are assumed to be the column and row indices of the elements in z.
Surface Plotting, Pyramid Quiz
Surface Plotting, Plane

Quiz
Surface Plotting, Grid

Quiz
Surface Plotting, Bowl Quiz
Mesh Grid Shortcut

Code

- \([x, y] = \text{meshgrid}(u, v)\) creates \(x = \text{repmat}(u, [\text{length}(v), 1])\) and \(y = \text{repmat}(v', [1, \text{length}(u)])\). The matrices \(x, y\) then can be used to plot the surface \(z = f(x, y)\) using \(\text{surf}(x, y, f(x, y))\).

- \([x, y, z] = \text{sphere}()\) and \([x, y, z] = \text{cylinder}()\) create meshes of a unit sphere and a unit cylinder. The surface then can be plotted using \(\text{surf}(x, y, z)\).
Under "PLOTS" tab, many other plots can be created based on a matrix.
.m files are MATLAB scripts and can be used to store a list of commands or the definition of a function. More details in the next lecture.

The script and its output can be published as a PDF file or an HTML web page.
Blank Slide