CS368 MATLAB Programming
 Lecture 3

Young Wu

Based on lecture slides by Michael O'Neill and Beck Hasti
February 9, 2022

Curves

Math

- A curve can be the graph of a function described by $y=f(x)$, or the trace of a moving point, in which the movement of the point is described by its position $\left(f_{x}(t), f_{y}(t)\right)$ at time t.
- A curve is plotted using a large number of line segments.

Function Curves

Math

- To plot $y=f(x)$ from $x=x_{1}$ to $x=x_{n}$, find $x_{1}<x_{2}<x_{3}<\ldots<x_{n}$ and use lines to connect the following points,

$$
\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right),\left(x_{3}, f\left(x_{3}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right) .
$$

Parametric Curves

Math

- To plot $\left(f_{x}(t), f_{y}(t)\right)$ from $t=t_{1}$ to t_{n}, find $t_{1}<t_{2}<t_{3}<\ldots<t_{n}$ and use lines to connect the following points,

$$
\left(f_{x}\left(t_{1}\right), f_{y}\left(t_{1}\right)\right),\left(f_{x}\left(t_{2}\right), f_{y}\left(t_{2}\right)\right),\left(f_{x}\left(t_{3}\right), f_{y}\left(t_{3}\right)\right), \ldots,\left(f_{x}\left(t_{n}\right), f_{y}\left(t_{n}\right)\right)
$$

Curve Discretization

Math

- $t_{1}, t_{2}, t_{3}, \ldots, t_{n}$ is a partition of the domain $t \in\left[t_{1}, t_{n}\right]$.
(1) The partition is usually uniform, meaning $t_{i}=t_{i-1}+\delta$ with $\delta=\frac{t_{n}-t_{1}}{n}$ and some large n.
(2) t_{i} can also be sampled randomly. More details in a later lecture.
(3) t_{i} can also be chosen according to how fast the function is changing.
(9) t_{i} can also be chosen so that the lengths of the line segments are the same.

Curve Plotting

Code

- Suppose x, y are vectors of length n.
- plot (x, y) plots line segments connecting $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
(1) For example, define $x=0: 0.01: 1$ and use plot $(x, f(x))$ to plot $f(x)$ between 0 and 1 with a partition of size 100 .
(2) Another example, define $t=0: 0.01: 1$ and use $\operatorname{plot}(f x(t), f y(t))$ to plot $\left(f_{x}(t), f_{y}(t)\right)$ between 0 and 1 with a partition of size 100 .

Line Specs

Code

- plot (x, y, s) s specifies the style, marker, and color of the lines.
(1) Line style: '-' solid, '--' dashed, ':' dotted, '-.' dash-dotted.
(2) Marker: 'o' circle, '.' dot, ' x ' cross, 's' square, ' d ' diamond ...
(3) Color: 'r' red, ' g ' green, 'b' blue, ' k ' black, ' w ' white ...
- plot (x1, y1, s1, x2, y2, s2, ...) plots multiple lines in the same figure.

Curve Plotting Quiz Questions
 Quiz

Plotting Features

Code

- Texts can be added to the plot. More details about text manipulation in the next lecture.
- title (t) adds title t .
- xlabel (t) adds x-axis label t.
- ylabel (t) adds y-axis label t.
- legend (c1, c2, ...) adds legend (names of the curves $\left.c_{1}, c_{2}, \ldots\right)$.
- text (x, y, t) adds text t at position (x, y).
- axis $([x 0, x 1, y 0, y 1])$ changes the range of the axes to $x \in\left[x_{0}, x_{1}\right]$ and $y \in\left[y_{0}, y_{1}\right]$.

3D Curve Plotting

Code

- Suppose x, y, z are vectors of length n.
- plot3(x,y,z,s) plots the lines in 3D connecting $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right), \ldots,\left(x_{n}, y_{n}, z_{n}\right)$, with specs s.

Surfaces
 Math

- A surface can be a graph of a function described by $z=f(x, y)$, or the trace of a moving point, in which the movement of the point is described by its position $\left(f_{x}(s, t), f_{y}(s, t), f_{z}(s, t)\right)$.
- A surface is plotted using a large number of faces, usually triangles, but in MATLAB, four sided polygons.

Surface Plotting

Code

- Suppose x, y, z are matrices representing points on the surface.
- contour (x, y, z, n) plots n contours of the surface, and contour3(x, y, z, n) plots them in 3D.
- mesh (x, y, z) plots the surface mesh.
- $\operatorname{surf}(x, y, z)$ plots the surface.
- If x and y are omitted, the x and y coordinates are assumed to be the column and row indices of the elements in z.

Surface Plotting Quiz Questions

Quiz

Mesh Grid Shortcut

Code

- $[x, y]=\operatorname{meshgrid}(u, v)$ creates $x=\operatorname{repmat}(u,[\operatorname{length}(v), 1])$ and $y=\operatorname{repmat}\left(v^{\prime},[1\right.$, length $\left.(u)]\right)$. The matrices x, y then can be used to plot the surface $z=f(x, y)$ using $\operatorname{surf}(x, y, f(x, y))$.
- $[x, y, z]=\operatorname{sphere(})$ and $[x, y, z]=$ cylinder() create meshes of a unit sphere and a unit cylinder. The surface then can be plotted using $\operatorname{surf}(x, y, z)$.

Other Plots

Code

- Under "PLOTS" tab, many other plots can be created based on a matrix.

Script

Code

- .m files are MATLAB scripts and can be used to store a list of commands or the definition of a function. More details in the next next lecture.
- The script and its output can be published as a PDF file or an HTML web page.

Blank Slide

