CS368 MATLAB Programming
Lecture 4

Young Wu

Based on lecture slides by Michael O’Neill and Beck Hasti

February 16, 2022
Surface Plotting, Bowl

Quiz

1. (Plot $z = x^2 + y^2$ for $x = y = [-1 \ 0 \ 1]$.)

$x = 	ext{repmat}(-1:1, [3 \ 1]); \ y = x'$;

- $B: \text{surf}(x, y, x \cdot x^2 + y \cdot y^2)$
- $C: \text{surf}(x, y, x^2 + y^2)$
- $D: \text{surf}(x, y, x' \cdot x + y' \cdot y)$
Surface Plotting, Bowl

Quiz
ASCII Code

- ASCII stands for American Standard Code for Information Interchange.
- Each character is stored as an integer (its ASCII code).
- 0 to 9 are stored as 48 to 57.
- A to Z are stored as 65 to 90.
- a to z are stored as 97 to 122.
A string is a list of characters.

A string is stored as a (row) vector of integers with `char` variable type in MATLAB.

'Hello World!' is a string, and `char([72 101 108 108 111 32 87 111 114 108 100 33])` represents the same string.
Combining Strings

Two strings can be combined the same way two vectors are combined, for example, `['Hello' 'World' '! ']` is the same as `'Hello World!'`.

append(*x*, *y*, ...) also combines the strings *x*, *y*, ..., for example, *append*('Hello', 'World', '! ') returns `'Hello World!'`.

strcat(*x*, *y*, ...) combines (or concatenate) the strings *x*, *y*, ..., and removes trailing spaces, for example, *strcat*('Hello', 'World', '! ') returns `'HelloWorld!'`.
String Conversion

Code

- `num2str(x, n)` converts a number \(x \) (not ASCII code) to a string, rounded to \(n \) significant digits (different from \(n \) decimal places), for example, `num2str(pi, 4)` is the same as `'3.142'` or `char([51 46 49 52 50])`.

- `str2num(x)` converts a string back to a number or a matrix, for example, `str2num('3.142')` returns the number 3.142 and `str2num('1 2; 3 4')` returns the matrix \[
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\].
String Operations, Addition
Quiz

- 'abc' + 1
- A: 'abc1'
- B: 'bcd'
- C: 98 99 100
- D: 146 147 148
String Operations, Number Conversion

Quiz

- \textit{str2num(}'1'\textit{)} + \textit{num2str(}1\textit{)}
- \textbf{A} : '11'
- \textbf{B} : 11
- \textbf{C} : 50
String Operations, as Vectors

Quiz

- `text = 'a ':'e '; text(end:−1:1)
- `B : 'edcba'
- `C : 101 100 99 98 97
In MATLAB, there is *string* variable type that stores multiple characters as a single object so that multiple strings can be stored in a vector without getting combined into one, for example, ['a' 'b' 'c'] is the same as 'abc' but ['a' 'b' 'c'] stays a vector and "a" + "b" + "c" is the same as "abc".

To convert between the two types of strings, `string ('abc')` becomes "abc" and `char("abc")` becomes 'abc'.
Useful String Functions, Comparison

Code

- `strcmp(x, y)` compares two strings `x` and `y` and returns 1 if they are the same and 0 otherwise, for example, `strcmp('abc', ['a' 'b' 'c'])` returns 1 and `strcmp('abc', 'AbC')` returns 0.

- `strcmpi(x, y)` compares two strings `x` and `y` ignoring cases, for example, `strcmpi('abc', 'AbC')` returns 1.

- `upper(x)` and `lower(x)` converts the string `x` to upper and lower cases.
Useful String Functions, Find and Replace

Code

- `strfind(x, y)` finds the indices of all occurrences of `y` in `x`, for example, `strfind('aabb', 'a')` return `[1 2].`

- `strrep(x, o, n)` or `replace(x, o, n)` replaces all occurrences of `o` in `x` by `n` and returns the new string, for example, `strrep('aabb', 'b', 'c')` returns `'aacc'` and `replace('aabb', ['a', 'b'], ['c', 'd'])` returns `'ccdd'`.
Special Text Symbols

Code

- $\text{blanks}(n)$ creates a string with n spaces.
- "" (two single quotation marks, not one double quotation mark) is '.
- %% is %.
- \ is backslash \.
- \n is new line.
- \t is tab.
- \textit{disp}(x)\textit{ displays the string }x.\textit{ It does not store }x\textit{ in the variable }\textit{ans}.

- \textit{fprintf}(x, \, v_1, \, v_2, \, ...)\textit{ displays a string with }\%s\textit{ (string), }\%i\textit{ (integer), }\%f\textit{ (floating point), }\%e\textit{ (scientific notation) replaced by }v_1, v_2, ...
Add a number after % to set the field width (text length) for the string, for example, %5s and %−5i make sure that the displayed string has length \(\geq 5 \) by adding spaces when necessary. A positive number means added spaces are on the left and a negative number means added spaces are on the right.

Add a . followed by a number for %f to set the precision, the number of digits after the decimal point, for example, %.4f rounds the number to 4 decimal places, adding 0s when necessary.
Text Formatting, Integer

Quiz

- \texttt{fprintf ('a\%dib', 1)}
- \texttt{B : a1b}
- \texttt{C : a1 b}
- \texttt{D : a 1b}
Text Formatting, Floating
Quiz

- `fprintf ('a%5.2fb', pi)`
- A: `a3.14b`
- B: `a 3.14b`
- C: `a3.14 b`
- D: `a3.142b`
Text Input

Code

- `input(x)` gets a user input in MATLAB syntax. String `x` is the prompt.
- `input(x, 's')` gets a user input as a string.
- Sometimes the user input may need to be validated or reformatted before being used in subsequent computations. More details in a later lecture.
- `menu(x, c1, c2, ...)` or `listdlg ('ListString', c1, c2, ..., 'PromptString', x)` gets a user input from a list of choices `c1, c2, ...,` and returns the index.
Text Input, Input

Code

- `length(input('Enter a string ', 's'))` %User enters '10', including the quotes.
- \(B : 2 \)
- \(C : 4 \)
- \(D : 10 \)
Text Input, Multiple Inputs

Code

- \texttt{input('Enter x1', 's')} + \texttt{input('Enter x2')} \quad \% \text{User enters '10' and '1', including the quotes.}
- \texttt{B : '101'}
- \texttt{C : 11}
- \texttt{D : 50 \; 49}
Text Input, Options

Code

1. \(\text{opt} = ['one', 'two', 'three']; \)
2. \(\text{opt(menu('Select a string', '1', '2', '3'))} \) %User selects 2.

- \(B : 'two' \)
- \(C : '2' \)
- \(D : 2 \)
- \(E : \text{None of the above} \)
File Input

Code

- `load(x, '— ascii ')` loads the text file with name `x`.
- `load(x)` can load a `.mat` binary file.
- `readmatrix(x)` loads the text or spreadsheet file with name `x` into a single matrix.
- Under the ”HOME” tab, there is a ”Import Data” tool that can be used to import data in various formats from files.
File Output

Code

- `save(x, v, ..., '— ascii ')` saves the variables with names `v, ...,` to the file with name `x`.
- `save(x, v, ...)` saves the variables in a `.mat` binary file, not human-readable.
- `writematrix(v, x)` saves the variable `v` to the file with name `x`.
String File Input Output

Code

- **fileread** (x) reads the text file with name x as a string with *char* type.
- **readlines** (x) reads the text file with name x as a vector of lines, each line has the *string* type.
- **fopen(x, 'w'); fprintf (x, v); fclose (x);** writes the string v to the file with name x.
Blank Slide