CS368 MATLAB Programming
 Lecture 5

Young Wu

Based on lecture slides by Michael O'Neill and Beck Hasti

February 23, 2022

Guess Two-Thirds of the Average Game Quiz

- Enter an integer between 0 and 100 (including 0 and 100) that is the closest to $\frac{2}{3}$ of the average of everyone's integer.

Comment on Vectorization

Admin

- Please try to avoid using for loops and if conditionals in the first half of the course.
- The main difference between MATLAB and other programming languages is its very efficient matrix operation implementation.

Boolean Variables
 Math

- A Boolean variable, also called logical variable type in MATLAB, is a variable with two possible values true and false.
- A Boolean variable is stored as either 1 for true or 0 for false.

Indicator Functions

Math

- Indicator functions, also called dummy variables, are functions that return 1 if a condition is satisfied and 0 if the condition is not satisfied.
(1) $x==y$ is the indicator of $x=y$, meaning $\left\{\begin{array}{ll}1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{array}\right.$.
(2) $x^{\sim}=y$ is the indicator of $x \neq y$, meaning $\left\{\begin{array}{ll}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{array}\right.$, $x!=y$ does not work in MATLAB.
(3) $x>y, x>=y$ are indicators of $x>y$ and $x \geqslant y$.
(9) $x<y, x<=y$ are indicators of $x<y$ and $x \leqslant y$.

Other Logical Functions
 Code

- ${ }^{\sim}$ is not: ${ }^{\sim} 0$ is 1 and ${ }^{\sim} 1$ is 0 .
- \& is and: $0 \& 0$ is $0,0 \& 1$ is $0,1 \& 0$ is $0,1 \& 1$ is 1 .
- | is or: $0 \mid 0$ is $0,0 \mid 1$ is $1,1 \mid 0$ is $1,1 \mid 1$ is 1 .
- ==, $\sim=,<,<=,>,>=, \sim, \&, \mid$ can be applied element-wise to a vector directly.

Short Circuit Evaluation

Code

- \& \& is and, but only works on scalars.
- || is or, but only works on scalars.
- \&\& and || use short-circuit evaluation, for example, when evaluating $a \& \& b$, if a is false, then b will not be evaluated, and when evaluating a $\| b$, if a is true, then b will not be evaluated.

Vector Reduction Logical Functions

Code

- any (x) returns whether any of the elements in the matrix or vector x is non-zero.
- all (x) returns whether all of the elements in the matrix or vector x is non-zero.
- find (x) finds the index of all the non-zero elements in the vector x.
- find $(x, 1)$ finds the index of the first non-zero element in the vector x.

Other Reduction Functions

Code

- $\operatorname{sum}(x)$ and $\operatorname{prod}(x)$ compute the sum and product of the elements in a matrix or vector x.
- $\operatorname{sum}(x, 1)$ and $\operatorname{prod}(x, 1)$ compute the column sums and products of the elements in a matrix x, for example, $\operatorname{sum}\left(\left[\begin{array}{lll}1 & 2 ; & 3\end{array}\right], 1\right)$ returns the column sums $\left[\begin{array}{ll}4 & 6\end{array}\right]$.
- $\operatorname{sum}(x, 2)$ and $\operatorname{prod}(x, 2)$ compute the row sums and products of the elements in a matrix x, for example, $\operatorname{sum}\left(\left[\begin{array}{llll}1 & 2 ; & 3 & 4\end{array}\right], 2\right)$ returns the row sums $\left[\begin{array}{l}3 \\ 7\end{array}\right]$.
- mean (x) computes the average of the numbers in a matrix or vector x.
- $\max (x)$ and $\min (x)$ compute the maximum and minimum of the elements in a matrix or vector x.

Indicator, Quiz Grade Quiz

- (Compute the number of questions a student gets incorrect if the student's answers are B, C, D and the correct answers are B, D, D ?)
- 2
(1) $a=\left[{ }^{\prime} B^{\prime},{ }^{\prime} C^{\prime}, D^{\prime}\right] ; s=\left[' B^{\prime},{ }^{\prime} D^{\prime}, \quad D^{\prime}\right]$;
- C $: \operatorname{sum}(a==s)$
- $D: \operatorname{sum}\left(a^{\sim}=s\right)$
- $E: \operatorname{sum}(a!=s)$ (this is not MATLAB)

Indicator, Grade Point Average

Quiz

- (Compute the GPA if C is worth 1 point and N is worth 0 point for a student whose grades are C, C, N.)
- 0.5
(1) $g=\left[C^{\prime}, C^{\prime}, \quad, N^{\prime},{ }^{\prime} N^{\prime}\right]$;
- C : $\left(1 *\left(g=={ }^{\prime} C^{\prime}\right)+0 *\left(g=={ }^{\prime} N^{\prime}\right)\right) /$ length (g)
- $D:\left(1 * \operatorname{sum}\left(g==^{\prime} C^{\prime}\right)+0 * \operatorname{sum}\left(g=={ }^{\prime} N '\right)\right) /$ length (g)

Indicator, Letter Grade Quiz

- (Compute letter grade if A corresponds to a grade $\geqslant 90, B$ for a grade $\geqslant 80, C$ for a grade $\geqslant 70$, and D otherwise.)
- 'C'
(1) $g=75 ; c=\left[\begin{array}{lll}101908070 & 0\end{array}\right] ; s=\left[' A '\right.$ ' B^{\prime} ' C^{\prime} ' D ' $]$;
- $C: s(\operatorname{sum}(g>=c)+1)$
- $D: s(\operatorname{sum}(g<c))$

Indicator, Letter Grades

Quiz

- (Compute letter grades if A corresponds to a grade $\geqslant 90, B$ for a grade $\geqslant 80, C$ for a grade $\geqslant 70$, and D otherwise.)
- 'ACD'
(1)

$$
g=\left[9575 \text { 65]; } c=[1019080700] ; s=\left[' A^{\prime} \quad B^{\prime} '^{\prime} C^{\prime} \quad D^{\prime}\right] ;\right.
$$

- $C: s\left(\operatorname{sum}\left(r e p m a t\left(g^{\prime}, 1,5\right)<\operatorname{repmat}(c, 3,1)\right)+1\right)$
- $D: \operatorname{s}\left(\operatorname{sum}\left(r e p m a t\left(g^{\prime}, 1,5\right)<\operatorname{repmat}(c, 3,1), 2\right)\right)$

Functions

Math

- A function $y=f(x)$ is a mapping from a list of inputs x, also called arguments or parameters, to a list of outputs y.
- The previous lectures covered many built-in functions in MATLAB, for example, \log has 1 input and 1 output, + has 2 inputs and 1 output, and size has 1 input and 2 outputs.
- New functions can be defined in .m files and used in commands.

Function Definition

Code

- A function with name f should be put in a file named f.m.
- The first line of the file is function $y=f(x)$ or function $[y 1, y 2, \ldots]=f(x 1, x 2, \ldots)$, where y is the name or names of the variables to return, and x is the list of arguments of the function.
- The second line of the file is usually comments describing what the function does. Comments start with $\%$ the line after $\%$ is not executed by the program.
- The last line of the file should be end, but it can be omitted.

Helper Functions
 Code

- Multiple functions can be defined in the same file f.m, but only f can be used outside the file in commands.
- The functions in $f . m$ that is not f are helper functions.

Function Example, Addition

Code

- The addition function $x+y$ is usually written in infix notation (argument 1, then function name, then argument 2).
- The following function is the addition function in prefix notation (function name, then argument 1, then argument 2).
(1) function $z=\operatorname{add}(x, y)$
(2) $z=x+y$;
(3) end
- $\operatorname{add}(1,2)$ returns 3 .

Function Example, Linear Combination

Code

- The linear combination of x and y with coefficients u and v is $u x+v y$.
- Sometimes, u, v are not specified, so the default value $u=v=1$ is used.
(1) function $z=\operatorname{lincom}(x, y, u, v)$
(2) arguments
(3) $x ; y ; u=1 ; v=1$;
(9) end
(3) $z=u * x+v * y$;
(0) end
- arguments block is also used for input validation. More detail in a later lecture.

Function Example, Linear Combination Too

Code
(1) function $z=\operatorname{lincom}(x, y, u, v)$
(2) arguments
(3) $x ; y ; u=1 ; v=1$;
(4) end
(3) $z=u * x+v * y$;
(0) end

- lincom(1, 2, 3, 4) returns 11.
- lincom $(1,2,3)$ returns 5.
- $\operatorname{lincom}(1,2)$ returns 3 .

Function Example, Max and Min

Code

- Multiple values can be returned from a function, $[y 1, y 2, \ldots, y n]=f(x)$ stores the value of i-th output in y_{i} for $i=1,2, \ldots, n$ and $f(x)$ only returns first output.
(1) function $[m x, m n]=m x n(x)$
(2) $m x=\max (x)$;
(3) $m n=\min (x)$;
(3) end
- mxn([1, 2, 3]) returns 3
- $[a b]=m \times n([1,2,3])$ sets a to 3 and b to 1 .

Functions, Vector Output

Quiz
(1) function $v=f 1(x)$
(2) $v=[x, x+1]$;
(3) end
(1) $\operatorname{sum}(f 1(2))$

- B: 2
- C:3
- $D: 5$

Functions, Multiple Outputs
 Quiz

(1) function $[u, v]=f 2(x)$
(2) $u=x ; v=x+1$;

- end
- $\operatorname{sum}(f 2(2))$
- B: 2
- C: 3
- $D: 5$

Blank Slide

