CS368 MATLAB Programming
 Lecture 6

Young Wu

Based on lecture slides by Michael O'Neill and Beck Hasti

March 3, 2022

Guess Two-Thirds of the Average Game Quiz

- Enter an integer between 0 and 100 (including 0 and 100) that is the closest to $\frac{2}{3}$ of the average of everyone's integer.

A Simple Linear System

Quiz

- What is the height of the table?

System of Two Equations
 Math

- $\left\{\begin{array}{l}m_{11} x_{1}+m_{12} x_{2}=b_{1} \\ m_{21} x_{1}+m_{22} x_{2}=b_{2}\end{array}\right.$ is a system of two equations and two unknowns x_{1} and x_{2}.
- The system can be written in matrix form
$\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$.
- The system may have 0,1 or infinite number of solutions.

Two Equations Example Math

- $\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}4 \\ 5\end{array}\right]$ has no solution.
- $\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}4 \\ 12\end{array}\right]$ has infinite number of solutions,

$$
x=\left[\begin{array}{c}
4-2 t \\
t
\end{array}\right], t \in \mathbb{R}
$$

- $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}5 \\ 11\end{array}\right]$ has a unique solution $x=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

Two Equations General Solution

Math

- In general, for $\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$, if
$d=m_{11} m_{22}-m_{12} m_{21}=0$, then there are either no solution or infinite number of solutions; otherwise, there is a unique solution $x=\frac{1}{d}\left[\begin{array}{l}m_{22} b_{1}-m_{12} b_{2} \\ m_{11} b_{2}-m_{21} b_{1}\end{array}\right]$.

Solving Two Equations

Code

- [m11 m12; m21 m22] \[b1; b2] or [b1; b2] / [m11 m12; m21 m22] solves the system $\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ for $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
- The MATLAB command will always output a solution, usually close to infinity if there are none; and only output one if there are infinite number of them.
- There will be a warning about the matrix being singular.

System of Equations

Math
$\left\{\begin{array}{l}m_{11} x_{1}+m_{12} x_{2}+\ldots+m_{1 n} x_{n}=b_{1} \\ m_{21} x_{1}+m_{22} x_{2}+\ldots+m_{2 n} x_{n}=b_{2} \\ \ldots \\ m_{k 1} x_{1}+m_{k 2} x_{2}+\ldots+m_{k n} x_{n}=b_{k}\end{array} \quad\right.$ is a system of k
equations and n unknowns $x_{1}, x_{2}, \ldots, x_{n}$.

- The system can be written in matrix form

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & \ldots & m_{1 n} \\
m_{21} & m_{22} & \ldots & m_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
m_{k 1} & m_{k 2} & \ldots & m_{k n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
b_{k}
\end{array}\right] \text {, or } M x=b .
$$

Solving a System
 Math

- Let $M x=b$ be a system of linear equations.
- x can be solved by hand using Gaussian elimination.
- It is faster to solve for x using LU decomposition.

LU Decomposition

Math

- Every matrix M can be written in the form $P M=L U$.
(1) P is a permutation matrix (each row and each column contain one 1 and all other entries are 0 s).
(2) L is a lower triangular matrix (all entries above the diagonal are 0 s).
(3) U is a upper triangular matrix (all entries below the diagonal are 0s).
- $M x=b$ can be solved by solving $L y=P b$ for y then solving $U x=y$ for x.

Two by Two LU Decomposition

Math

- $M=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]$ can be written as

$$
L U=\left[\begin{array}{cc}
1 & 0 \\
\frac{m_{21}}{m_{11}} & \frac{1}{m_{11}}
\end{array}\right]\left[\begin{array}{cc}
m_{11} & m_{12} \\
0 & m_{11} m_{22}-m_{12} m_{21}
\end{array}\right]
$$

- Here, $P=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is the permutation matrix assuming $m_{11} \neq 0$, and if $m_{11}=0, P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ can be used instead.
- This makes solving $L y=b$ and $U x=y$ very fast since only forward and backward substitutions are required.

Solving

Code

- $M \backslash b$ or b / M solves $M x=b$ for x.
- $[L, U, P]=\operatorname{lu}(M)$ computes the $L U$ decomposition and $y=L \backslash(P * b) ; x=U \backslash y$ also solves $M x=b$ for x.
- In the case $M x=b$ needs to be solved repeatedly for the same M but different b 's, it is faster to find the LU decomposition once and use L, U, P on different b 's.
- $d=$ decomposition($\left.M, ~ ' / u u^{\prime}\right) ; d \backslash b$ uses the same LU decomposition approach without the need to remember how to solve for x given the decomposition.

Linear System, Simple Quiz

- (Solve $x_{1}-x_{2}=0$ and $x_{1}+x_{2}=2$.)
- 11
- $A:[1-1 ; 11] \backslash[0 ; 2]$
- $B:[11 ;-11] \backslash[0 ; 2]$

Linear System, Component

Quiz

- (In a factor input matrix M, row i column j represents the amount of material i required in the production of product j. In an input vector b, row i represents the amount material i available. Given M, b, compute the number of products that can be produced.)
- 111
(1) $M=[147 ; 258 ; 3610] ; b=[12 ; 15 ; 19]$;
- $A: M \backslash b$
- $B: M^{\prime} \backslash b$

Linear System, Temperature

Quiz

- $\left(\ln \left[\begin{array}{cccc}6 & T_{1} & T_{2} & - \\ - & T_{3} & T_{4} & 12\end{array}\right]\right.$, each value represents the temperature of a square tile, and should be equal to the average of the surrounding tile temperatures. What are the values T_{1} to T_{4} ?)
$\begin{array}{cc}8 & 9 \\ -9 & 10\end{array}$
(1) $M=[1-1 / 3-1 / 30 ;-1 / 210-1 / 2]$;
(2) $M=[M ;-1 / 201-1 / 2 ; 0-1 / 3-1 / 31]$;
- $A: b=\left[\begin{array}{llll}2 & 0 & 0 & 4\end{array}\right]^{\prime}$;
- $B: b=\left[\begin{array}{llll}6 & 0 & 0 & 12\end{array}\right]^{\prime} ;$
(1) reshape $(M \backslash b,[2,2])$

Linear System, Temperature, Homework Quiz

Invertability
 Math

- A square matrix M is invertible if there exists M^{-1} such that $M^{-1} M=I$, and M is singular if it is not invertible.
- If M is invertible, then the solution to $M x=b$ is $x=M^{-1} b$.
- If M is singular, then $M x=b$ may not have a solution for x.

Determinant

Math

- The determinant of a matrix M, denoted by $\operatorname{det}(M)$ or $|M|$, measures the magnitude of a matrix.
- $\operatorname{det}(M)=0$ if and only if M is singular.
- When $\operatorname{det}(M)$ is close to $0, M$ could be difficult to invert due to numerical errors, and MATLAB issues a warning about the matrix being close to singular.

Condition Number

Math

- Matrices that are close to singular are also called ill-conditioned.
- The condition number of a matrix M, denoted by $\kappa(M)$, measures how much the solution x changes due to a small error in b.
- The larger the condition number, the more sensitive the solution is to the changes in b, which implies that numerical errors are more likely to affect the solution.
- If M is not invertible, the condition number of M is infinity.

Inversion and Condition Number

Code

- inv(M) finds the inverse of a square matrix M.
- $\operatorname{det}(M)$ finds the determinant of a square matrix M.
- cond (M) finds the condition number of a matrix M.

Hilbert Matrix

Math

- Hilbert matrix is an example of an ill-conditioned matrix.
- Row i column j of a Hilbert matrix is $H_{i j}=\frac{1}{i+j-1}$.
- For example, a 3 by 3 Hilbert matrix is $\left[\begin{array}{ccc}1 & 1 / 2 & 1 / 3 \\ 1 / 2 & 1 / 3 & 1 / 4 \\ 1 / 3 & 1 / 4 & 1 / 5\end{array}\right]$,
and a 4 by 4 Hilbert matrix is $\left[\begin{array}{cccc}1 & 1 / 2 & 1 / 3 & 1 / 4 \\ 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 \\ 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 \\ 1 / 4 & 1 / 5 & 1 / 6 & 1 / 7\end{array}\right]$.
- hilb (n) creates the n by n Hilbert matrix.

Condition Number, Hilbert Matrix

Quiz

(1) $m=\operatorname{hilb}(5) ; b=m * \operatorname{ones}(5,1) ; x=m \backslash b$;
(2) cond $(m) \% 4.7661 \mathrm{e}+05$
(3) $[\min (x) \max (x)]$

- $B: 11$
- C: 0 0

Condition Number, Hilbert Matrix Large Quiz

(1) $m=\operatorname{hilb}(25) ; b=m * \operatorname{ones}(25,1) ; x=m \backslash b$;
(2) cond (m) $\% 8.9640 \mathrm{e}+18$
(3) $[\min (x) \max (x)]$

- $B: \mathbf{1} 1$
- C:-104.7468 74.0750

Condition Number, Hilbert Matrix Larger Quiz

(1) $m=\operatorname{hilb}(100) ; b=m * \operatorname{ones}(100,1) ; x=m \backslash b$;
(2) cond (m) $\% 5.6675 \mathrm{e}+19$
(3) $[\min (x) \max (x)]$

- $B: \mathbf{1} 1$
- $C:-328.5181400 .4187$

Blank Slide

