Guess Two-Thirds of the Average Game Quiz

- Enter an integer between 0 and 100 (including 0 and 100) that is the closest to \(\frac{2}{3} \) of the average of everyone’s integer.
A Simple Linear System

Quiz

What is the height of the table?
System of Two Equations
Math

\[
\begin{align*}
 m_{11}x_1 + m_{12}x_2 &= b_1 \\
 m_{21}x_1 + m_{22}x_2 &= b_2
\end{align*}
\]
is a system of two equations and two unknowns \(x_1\) and \(x_2\).

The system can be written in matrix form
\[
\begin{bmatrix}
 m_{11} & m_{12} \\
 m_{21} & m_{22}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
=
\begin{bmatrix}
 b_1 \\
 b_2
\end{bmatrix}
\]

The system may have 0, 1 or infinite number of solutions.
Two Equations Example

Math

- \([1 2 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}] = \begin{bmatrix} 4 \\ 5 \end{bmatrix}\) has no solution.

- \([1 2 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}] = \begin{bmatrix} 4 \\ 12 \end{bmatrix}\) has infinite number of solutions,

 \[x = \begin{bmatrix} 4 - 2t \\ t \end{bmatrix}, \quad t \in \mathbb{R}\.

- \([1 2 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}] = \begin{bmatrix} 5 \\ 11 \end{bmatrix}\) has a unique solution \(x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}\).
In general, for
\[
\begin{bmatrix}
 m_{11} & m_{12} \\
 m_{21} & m_{22}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
= \begin{bmatrix}
 b_1 \\
 b_2
\end{bmatrix},
\]
if
\[d = m_{11}m_{22} - m_{12}m_{21} = 0\]
then there are either no solution or infinite number of solutions; otherwise, there is a unique solution
\[
x = \frac{1}{d} \begin{bmatrix}
 m_{22}b_1 - m_{12}b_2 \\
 m_{11}b_2 - m_{21}b_1
\end{bmatrix}.
\]
Solving Two Equations

Code

- \([m_{11} \ m_{12}; \ m_{21} \ m_{22}] \ \backslash \ [b_1; \ b_2] \text{ or} \ [b_1; \ b_2] / [m_{11} \ m_{12}; \ m_{21} \ m_{22}]\) solves the system
 \[
 \begin{bmatrix}
 m_{11} & m_{12} \\
 m_{21} & m_{22}
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 x_2
 \end{bmatrix}
 =
 \begin{bmatrix}
 b_1 \\
 b_2
 \end{bmatrix}
 \text{ for } \begin{bmatrix}
 x_1 \\
 x_2
 \end{bmatrix}.
 \]

- The MATLAB command will always output a solution, usually close to infinity if there are none; and only output one if there are infinite number of them.

- There will be a warning about the matrix being singular.
System of Equations

Math

\[
\begin{align*}
 m_{11}x_1 + m_{12}x_2 + \ldots + m_{1n}x_n &= b_1 \\
 m_{21}x_1 + m_{22}x_2 + \ldots + m_{2n}x_n &= b_2 \\
 \vdots \\
 m_{k1}x_1 + m_{k2}x_2 + \ldots + m_{kn}x_n &= b_k
\end{align*}
\]

is a system of \(k \) equations and \(n \) unknowns \(x_1, x_2, \ldots, x_n \).

The system can be written in matrix form

\[
\begin{bmatrix}
 m_{11} & m_{12} & \ldots & m_{1n} \\
 m_{21} & m_{22} & \ldots & m_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 m_{k1} & m_{k2} & \ldots & m_{kn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
=
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_k
\end{bmatrix}, \text{ or } Mx = b.
\]
Solving a System

Math

- Let $Mx = b$ be a system of linear equations.
- x can be solved by hand using Gaussian elimination.
- It is faster to solve for x using LU decomposition.
LU Decomposition

Math

- Every matrix M can be written in the form $PM = LU$.

 1. P is a permutation matrix (each row and each column contain one 1 and all other entries are 0s).

 2. L is a lower triangular matrix (all entries above the diagonal are 0s).

 3. U is a upper triangular matrix (all entries below the diagonal are 0s).

- $Mx = b$ can be solved by solving $Ly = Pb$ for y then solving $Ux = y$ for x.
Two by Two LU Decomposition

Math

- $M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$ can be written as

 \[LU = \begin{bmatrix} 1 & 0 \\ m_{21} & 1 \\ m_{11} & \frac{1}{m_{11}} \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} \\ 0 & m_{11}m_{22} - m_{12}m_{21} \end{bmatrix} \]

- Here, $P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the permutation matrix assuming $m_{11} \neq 0$, and if $m_{11} = 0$, $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ can be used instead.

- This makes solving $Ly = b$ and $Ux = y$ very fast since only forward and backward substitutions are required.
Solving
Code

- \(M \backslash b \) or \(b \div M \) solves \(Mx = b \) for \(x \).
- \([L, U, P] = \text{lu}(M)\) computes the LU decomposition and \(y = L \backslash (P \ast b) \); \(x = U \backslash y \) also solves \(Mx = b \) for \(x \).
- In the case \(Mx = b \) needs to be solved repeatedly for the same \(M \) but different \(b \)'s, it is faster to find the LU decomposition once and use \(L, U, P \) on different \(b \)'s.
- \(d = \text{decomposition}(M, 'lu'); \ d \backslash b \) uses the same LU decomposition approach without the need to remember how to solve for \(x \) given the decomposition.
Linear System, Simple
Quiz

(Solve $x_1 - x_2 = 0$ and $x_1 + x_2 = 2$.)

- $1 \quad 1$
- $A : \begin{bmatrix} 1 & -1; & 1 & 1 \end{bmatrix} \ \begin{bmatrix} 0; & 2 \end{bmatrix}$
- $B : \begin{bmatrix} 1 & 1; & -1 & 1 \end{bmatrix} \ \begin{bmatrix} 0; & 2 \end{bmatrix}$
(In a factor input matrix M, row i column j represents the amount of material i required in the production of product j. In an input vector b, row i represents the amount material i available. Given M, b, compute the number of products that can be produced.)

- $1 \ 1 \ 1$

- $M = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{bmatrix}$; $b = \begin{bmatrix} 12 \\ 15 \\ 19 \end{bmatrix}$;

- $A : M \backslash b$

- $B : M' \backslash b$
Linear System, Temperature

Quiz

\[
\begin{bmatrix}
6 & T_1 & T_2 & - \\
- & T_3 & T_4 & 12
\end{bmatrix}, \text{ each value represents the temperature of a square tile, and should be equal to the average of the surrounding tile temperatures. What are the values } T_1 \text{ to } T_4?\]

8 9
9 10

1 \(M = \begin{bmatrix} 1 & -1/3 & -1/3 & 0; & -1/2 & 1 & 0 & -1/2 \end{bmatrix}; \)
2 \(M = [M; -1/2 0 1 -1/2; 0 -1/3 -1/3 1]; \)

\(A : b = [2 0 0 4]'; \)
\(B : b = [6 0 0 12]'; \)

4 \(\text{reshape}(M \setminus b, [2, 2]) \)
Linear System, Temperature, Homework

Quiz
Invertability

Math

A square matrix M is invertible if there exists M^{-1} such that $M^{-1}M = I$, and M is singular if it is not invertible.

If M is invertible, then the solution to $Mx = b$ is $x = M^{-1}b$.

If M is singular, then $Mx = b$ may not have a solution for x.
The determinant of a matrix M, denoted by $\det(M)$ or $|M|$, measures the magnitude of a matrix.

$\det(M) = 0$ if and only if M is singular.

When $\det(M)$ is close to 0, M could be difficult to invert due to numerical errors, and MATLAB issues a warning about the matrix being close to singular.
Matrices that are close to singular are also called ill-conditioned.

The condition number of a matrix M, denoted by $\kappa(M)$, measures how much the solution x changes due to a small error in b.

The larger the condition number, the more sensitive the solution is to the changes in b, which implies that numerical errors are more likely to affect the solution.

If M is not invertible, the condition number of M is infinity.
Inversion and Condition Number

Code

- $\text{inv}(M)$ finds the inverse of a square matrix M.
- $\text{det}(M)$ finds the determinant of a square matrix M.
- $\text{cond}(M)$ finds the condition number of a matrix M.
Hilbert Matrix

Math

- Hilbert matrix is an example of an ill-conditioned matrix.
- Row i column j of a Hilbert matrix is $H_{ij} = \frac{1}{i + j - 1}$.
- For example, a 3 by 3 Hilbert matrix is

$$
\begin{bmatrix}
1 & 1/2 & 1/3 \\
1/2 & 1/3 & 1/4 \\
1/3 & 1/4 & 1/5 \\
\end{bmatrix},
$$

and a 4 by 4 Hilbert matrix is

$$
\begin{bmatrix}
1 & 1/2 & 1/3 & 1/4 \\
1/2 & 1/3 & 1/4 & 1/5 \\
1/3 & 1/4 & 1/5 & 1/6 \\
1/4 & 1/5 & 1/6 & 1/7 \\
\end{bmatrix}.
$$

- `hilb(n)` creates the n by n Hilbert matrix.
Condition Number, Hilbert Matrix

Quiz

1. \(m = \text{hilb}(5); \quad b = m \times \text{ones}(5, 1); \quad x = m \backslash b; \)
2. \(\text{cond}(m) \ %4.7661e+05 \)
3. \([\text{min}(x) \ \text{max}(x)] \)
 - \(B : 1 \quad 1 \)
 - \(C : 0 \quad 0 \)
Quiz

1. \(m = \text{hilb}(25); \ b = m * \text{ones}(25, 1); \ x = m \backslash b; \)
2. \(\text{cond}(m) \approx 8.9640e+18 \)
3. \([\text{min}(x) \ \text{max}(x)]\)
 - \(B : 1 \quad 1 \)
 - \(C : -104.7468 \quad 74.0750 \)
Condition Number, Hilbert Matrix Larger

Quiz

1. \(m = \text{hilb}(100); \ b = m \ast \text{ones}(100, 1); \ x = m \backslash b; \)
2. \(\text{cond}(m) \ %5.6675e+19 \)
3. \([\text{min}(x) \ \text{max}(x)]\)

- \(B : 1 \ 1 \)
- \(C : -328.5181 \ 400.4187 \)
Blank Slide