Interpolation 0000000000 Regression 000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

CS368 MATLAB Programming Lecture 7

Young Wu

Based on lecture slides by Michael O'Neill and Beck Hasti

March 9, 2022

Regression 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Polynomials Math

- A degree *n* polynomial, $c_n x^n + c_{n-1} x^{n-1} + c_{n-2} x^{n-2} + ... + c_2 x^2 + c_1 x + c_0$ is specified by a list of coefficients $c_n, c_{n-1}, ..., c_1, c_0$ usually stored in a vector.
- The computation can be done efficiently using Horner's method: ((((c_nx + c_{n-1})x + c_{n-2})x + ... + c₂)x + c₁)x + c₀.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Exponential and Trigonometry Functions Math

• Many elementary function can be evaluated and approximated using polynomials.

•
$$e^{x} \approx 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \frac{x^{5}}{120} + \dots$$

• $\sin(x) \approx x - \frac{x^{3}}{6} + \frac{x^{5}}{120} + \dots$
• $\cos(x) \approx 1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} + \dots$

• They are also called Taylor polynomials.

Interpolation 000000000000 Regression 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Polynomial Evaluation

- Suppose c and x are row vectors with length n.
- dot(c, x .^ ((n 1):-1:0)) evaluates the polynomial with coefficients c at x.
- *polyval*(*c*, *x*) evaluates the same polynomial but faster.

Regression 000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Polynomial Evaluation Quiz Questions

Interpolation •0000000000 Regression 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lagrange Polynomial Math

- A set of *n* points (with distinct *x* values) uniquely determine a degree *n* − 1 polynomial that passes through all the points.
- The coefficients of the leading terms can be zero, so technically the degree of the polynomial can be less than n-1.

Interpolation 0000000000

Regression 000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lagrange Polynomial Diagram Math

Interpolation 0000000000 Regression 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Vandermonde Matrix Math

• The coefficients can be found by solving a system of linear equations, $\begin{bmatrix} x_1^{n-1} & x_1^{n-2} & \dots & 1 \\ x_2^{n-1} & x_2^{n-2} & \dots & 1 \\ \dots & \dots & \dots & \dots \\ x_n^{n-1} & x_n^{n-2} & \dots & 1 \end{bmatrix} \begin{bmatrix} c_{n-1} \\ c_{n-2} \\ \dots \\ c_0 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}.$

Interpolation 0000000000 Regression 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Polyfit _{Code}

- Suppose x, y are two row vectors with length n.
- repmat(x', 1, n) ^ ((n 1):-1:0) is the Vandermonde matrix, and vander(x) creates the same matrix.
- vander(x) \ y' solves for the coefficients using the Vandermonde matrix.
- polyfit (x, y, n 1) finds the same coefficients.

Interpolation 0000000000 Regression 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Spline Math

- A set of *n* points (with distinct *x* values, and ordered according to *x*) can define *n* 1 cubic polynomial segments satisfying the following conditions.
- The *i*-th polynomial segment connects point *i* and point i + 1.
- The segments form a smooth curve. Technically, C² smoothness is desired: the first and second derivatives should be continuous.

Interpolation 00000000000 Regression 000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Spline Diagram

Tridiagonal Matrix

- With n points, there are 4n 4 coefficients to compute.
 Suppose the coefficient for segment i connecting (x_i, y_i) and (x_{i+1}, y_{i+1}) is c_{i1}, c_{i2}, c_{i3}, c_{i4}.
- $c_{i1}x_i^3 + c_{i2}x_i^2 + c_{i3}x_i + c_{i4} = y_i$ for i = 1, 2, ..., n 1 so that the segment passes through the left end point.
- $c_{i1}x_{i+1}^3 + c_{i2}x_{i+1}^2 + c_{i3}x_{i+1} + c_{i4} = y_{i+1}$ for i = 1, 2, ..., n-1 so that the segment passes through the right end point.
- 3 $c_{i,1}x_{i+1}^2 + 2c_{i2}x_{i+1} + c_{i3} = 3c_{i+1,1}x_{i+1}^2 + 2c_{i+1,2}x_{i+1} + c_{i+1,3}$ for i = 1, 2, ..., n-2 so that the first derivative is continuous.
- $6c_{i1}x_{i+1} + 2c_{i2} = 6c_{i+1,1}x_{i+1} + 2c_{i+1,1}$ for i = 1, 2, ..., n-2 so that the second derivative is continuous.
 - There are 4n 6 equations. 2 more equations are needed.

Interpolation 000000000000 Regression 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

End Point Conditions

- There are many ways to specify the 2 extra equations.
- If the third derivative for the first and last two segments are continuous, $c_{1,1} = c_{2,1}$ and $c_{n-1,1} = c (n-2,1)$, the resulting spline is called a not-a-knot spline.
- **2** If the second derivative at the end points are 0, or $6c_{1,1}x_1 + 2c_{1,2} = 0$ and $6c_{n-1,1}x_n + 2c_{n-1,2} = 0$, the resulting spline is called a natural spline.

Interpolation 000000000000 Regression 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Spline _{Code}

- Suppose x, y are two row vectors with length n.
- *spline* (*x*, *y*). *coefs* finds the coefficients of the cubic spline that interpolates (*x*, *y*) while satisfying the not-a-knot condition.
- spline (x, y, x0) evaluates the cubic spline interpolating (x, y) at x = x₀.
- *csape*(*x*, *y*, '*variational*'). *coefs* finds the coefficients of the natural cubic spline. It requires MATLAB's Curve Fitting Toolbox.

Interpolation 0000000000 Regression 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Local Coefficient

- spline (x, y). coefs are local coefficients meaning the equation for segment i and x ∈ [x_i, x_{i+1}] is c_{i1} (x x_i)³ + c_{i2} (x x_i)² + c_{i3} (x x_i) + c_{i4}.
- The polynomial can be expanded to find the coefficients of the original spline problem.

Interpolation 0000000000

Regression 000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Interpolation Quiz Questions

Regression •00000

Polynomial Regression

- *polyfit* (x, y, d) with d < n, finds the polynomial that is the closest to the points (x, y).
- The total distance from the points to the polynomial is defined as the sum of the squared differences between the y value at x and the value of the polynomial at x,

$$D = \sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{d} c_i x_i^j \right)^2$$

= $\sum_{i=1}^{n} \left(y_i - c_d x_i^d - c_{d-1} x_i^{d-1} - \dots - c_1 x_i - c_0 \right)^2$.

• *polyfit* finds the coefficients of the polynomial that minimizes *D*. These coefficients are also called regression coefficients.

Interpolation 00000000000 Regression

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Regression Diagram

Regression

General Linear Regression

- regress (y', X) finds the regression coefficients for c_nx_n + c_{n-1}x_{n-1} + ... + c₁x₁ + c₀x₀, where x₀, x₁, ..., x_n are the columns of X. It requires MATLAB's Statistics and Machine Learning Toolbox.
- regress (y', X) solves $(X^T X) c = X^T y$ instead of Xc = y. This is because $X^T X$ is always invertible (meaning $(X^T X)^{-1}$ always exists), so $c = (X^T X)^{-1} X^T y$.
- When X is the degree d Vandermonde matrix for x, meaning x_i = xⁱ for i = d, d 1, ..., 0, regress (y, X) finds the same coefficients as polyfit (x, y, d).

Interpolation 000000000000 Regression

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Non-Polynomial Regression

- polyfit (f(x), y, 1) finds the regression coefficients for $c_1 f(x) + c_0$, for example, polyfit (sin(x), y, 1) finds c_1, c_0 such that the total distance from the points to the function $y = c_1 sin(x) + c_0$ is minimized.
- regress (y', [f1(x') f2(x') ...]) finds the regression coefficients for $c_1f_1(x) + c_2f_2(x) + ...$, for example, regress (y', [sin(x') cos(x') ones(length(x), 1)]) finds c_2, c_1, c_0 such that the total distance from the points to the function $y = c_2 sin(x) + c_1 cos(x) + c_0$ is minimized.

Interpolation 00000000000 Regression

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Regression Quiz Questions

Interpolation 00000000000 Regression

Blank Slide

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @