CS368 MATLAB Programming
 Lecture 7

Young Wu

Based on lecture slides by Michael O'Neill and Beck Hasti

March 9, 2022

Polynomials

Math

- A degree n polynomial, $c_{n} x^{n}+c_{n-1} x^{n-1}+c_{n-2} x^{n-2}+\ldots+c_{2} x^{2}+c_{1} x+c_{0}$ is specified by a list of coefficients $c_{n}, c_{n-1}, \ldots, c_{1}, c_{0}$ usually stored in a vector.
- The computation can be done efficiently using Horner's method: $\left(\left(\left(\left(c_{n} x+c_{n-1}\right) x+c_{n-2}\right) x+\ldots+c_{2}\right) x+c_{1}\right) x+c_{0}$.

Exponential and Trigonometry Functions
 Math

- Many elementary function can be evaluated and approximated using polynomials.
(1) $e^{x} \approx 1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\ldots$
(2) $\sin (x) \approx x-\frac{x^{3}}{6}+\frac{x^{5}}{120}+\ldots$
(3) $\cos (x) \approx 1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+\ldots$
- They are also called Taylor polynomials.

Polynomial Evaluation

Code

- Suppose c and x are row vectors with length n.
- $\operatorname{dot}\left(c, x \wedge^{\wedge}((n-1):-1: 0)\right)$ evaluates the polynomial with coefficients c at x.
- polyval (c, x) evaluates the same polynomial but faster.

Polynomial Evaluation Quiz Questions

Quiz

Lagrange Polynomial
 Math

- A set of n points (with distinct x values) uniquely determine a degree $n-1$ polynomial that passes through all the points.
- The coefficients of the leading terms can be zero, so technically the degree of the polynomial can be less than $n-1$.

Lagrange Polynomial Diagram

Math

Vandermonde Matrix

Math

- The coefficients can be found by solving a system of linear

$$
\text { equations, }\left[\begin{array}{cccc}
x_{1}^{n-1} & x_{1}^{n-2} & \ldots & 1 \\
x_{2}^{n-1} & x_{2}^{n-2} & \ldots & 1 \\
\ldots & \ldots & \ldots & \ldots \\
x_{n}^{n-1} & x_{n}^{n-2} & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
c_{n-1} \\
c_{n-2} \\
\ldots \\
c_{0}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\ldots \\
y_{n}
\end{array}\right] .
$$

Polyfit

Code

- Suppose x, y are two row vectors with length n.
- repmat ($x^{\prime}, 1, n$) .^ (($n-1$):-1:0) is the Vandermonde matrix, and $\operatorname{vander}(x)$ creates the same matrix.
- vander $(x) \backslash y^{\prime}$ solves for the coefficients using the Vandermonde matrix.
- polyfit ($x, y, n-1$) finds the same coefficients.

Spline

Math

- A set of n points (with distinct x values, and ordered according to x) can define $n-1$ cubic polynomial segments satisfying the following conditions.
(1) The i-th polynomial segment connects point i and point $i+1$.
(2) The segments form a smooth curve. Technically, C^{2} smoothness is desired: the first and second derivatives should be continuous.

Spline Diagram

Math

Tridiagonal Matrix

Math

- With n points, there are $4 n-4$ coefficients to compute. Suppose the coefficient for segment i connecting (x_{i}, y_{i}) and $\left(x_{i+1}, y_{i+1}\right)$ is $c_{i 1}, c_{i 2}, c_{i 3}, c_{i 4}$.
(1) $c_{i 1} x_{i}^{3}+c_{i 2} x_{i}^{2}+c_{i 3} x_{i}+c_{i 4}=y_{i}$ for $i=1,2, \ldots, n-1$ so that the segment passes through the left end point.
(2) $c_{i 1} x_{i+1}^{3}+c_{i 2} x_{i+1}^{2}+c_{i 3} x_{i+1}+c_{i 4}=y_{i+1}$ for $i=1,2, \ldots, n-1$ so that the segment passes through the right end point.
(3) $3 c_{i, 1} x_{i+1}^{2}+2 c_{i 2} x_{i+1}+c_{i 3}=3 c_{i+1,1} x_{i+1}^{2}+2 c_{i+1,2} x_{i+1}+c_{i+1,3}$ for $i=1,2, \ldots, n-2$ so that the first derivative is continuous.
(9) $6 c_{i 1} x_{i+1}+2 c_{i 2}=6 c_{i+1,1} x_{i+1}+2 c_{i+1,1}$ for $i=1,2, \ldots, n-2$ so that the second derivative is continuous.
- There are $4 n-6$ equations. 2 more equations are needed.

End Point Conditions

Math

- There are many ways to specify the 2 extra equations.
(1) If the third derivative for the first and last two segments are continuous, $c_{1,1}=c_{2,1}$ and $c_{n-1,1}=c(n-2,1)$, the resulting spline is called a not-a-knot spline.
(2) If the second derivative at the end points are 0 , or $6 c_{1,1} x_{1}+2 c_{1,2}=0$ and $6 c_{n-1,1} x_{n}+2 c_{n-1,2}=0$, the resulting spline is called a natural spline.

Spline

Code

- Suppose x, y are two row vectors with length n.
- spline (x, y). coefs finds the coefficients of the cubic spline that interpolates (x, y) while satisfying the not-a-knot condition.
- spline $(x, y, x 0)$ evaluates the cubic spline interpolating (x, y) at $x=x_{0}$.
- csape(x, y, ' variational '). coefs finds the coefficients of the natural cubic spline. It requires MATLAB's Curve Fitting Toolbox.

Local Coefficient

Code

- spline (x, y). coefs are local coefficients meaning the equation for segment i and $x \in\left[x_{i}, x_{i+1}\right]$ is $c_{i 1}\left(x-x_{i}\right)^{3}+c_{i 2}\left(x-x_{i}\right)^{2}+c_{i 3}\left(x-x_{i}\right)+c_{i 4}$.
- The polynomial can be expanded to find the coefficients of the original spline problem.

Interpolation Quiz Questions

Quiz

Polynomial Regression

Math

- polyfit (x, y, d) with $d<n$, finds the polynomial that is the closest to the points (x, y).
- The total distance from the points to the polynomial is defined as the sum of the squared differences between the y value at x and the value of the polynomial at x,

$$
\begin{aligned}
D & =\sum_{i=1}^{n}\left(y_{i}-\sum_{j=0}^{d} c_{i} x_{i}^{j}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-c_{d} x_{i}^{d}-c_{d-1} x_{i}^{d-1}-\ldots-c_{1} x_{i}-c_{0}\right)^{2} .
\end{aligned}
$$

- polyfit finds the coefficients of the polynomial that minimizes
D. These coefficients are also called regression coefficients.

Regression Diagram

Math

General Linear Regression

Math

- regress $\left(y^{\prime}, X\right)$ finds the regression coefficients for $c_{n} x_{n}+c_{n-1} x_{n-1}+\ldots+c_{1} x_{1}+c_{0} x_{0}$, where $x_{0}, x_{1}, \ldots, x_{n}$ are the columns of X. It requires MATLAB's Statistics and Machine Learning Toolbox.
- regress $\left(y^{\prime}, X\right)$ solves $\left(X^{\top} X\right) c=X^{\top} y$ instead of $X c=y$. This is because $X^{T} X$ is always invertible (meaning $\left(X^{T} X\right)^{-1}$ always exists), so $c=\left(X^{\top} X\right)^{-1} X^{\top} y$.
- When X is the degree d Vandermonde matrix for x, meaning $x_{i}=x^{i}$ for $i=d, d-1, \ldots, 0$, regress (y, X) finds the same coefficients as polyfit (x, y, d).

Non-Polynomial Regression

Code

- polyfit $(f(x), y, 1)$ finds the regression coefficients for $c_{1} f(x)+c_{0}$, for example, polyfit $(\sin (x), y, 1)$ finds c_{1}, c_{0} such that the total distance from the points to the function $y=c_{1} \sin (x)+c_{0}$ is minimized.
- regress $\left(y^{\prime},\left[f 1\left(x^{\prime}\right) f 2\left(x^{\prime}\right) \quad ..\right]\right)$ finds the regression coefficients for $c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots$, for example, regress $\left(y^{\prime}, \quad\left[\sin \left(x^{\prime}\right) \cos \left(x^{\prime}\right)\right.\right.$ ones(length $\left.\left.\left.(x), 1\right)\right]\right)$ finds c_{2}, c_{1}, c_{0} such that the total distance from the points to the function $y=c_{2} \sin (x)+c_{1} \cos (x)+c_{0}$ is minimized.

Regression Quiz Questions
 Quiz

Blank Slide

