CS368 MATLAB Programming Lecture 9

Young Wu

Based on lecture slides by Michael O'Neill and Beck Hasti

March 30, 2022

Random Choice

- Select a random choice.
- A : A B : B
- - -
- C : C
- D : D
- E : E

Pseudo Randomness

- Truly random numbers are difficult or impossible to generate.
- A sequence of pseudo-random numbers is a deterministic sequence with complicated pattern that looks random to users who do not know the pattern therefore cannot predict the next number in the sequence.

Random Number Generator

- A simple pseudo-random number generator is the Linear Congruential Generator (LCG).
- Start with a seed x_0 .
- ② Compute $x_{n+1} = (ax_n + c) \mod m$ for some m, a, c unknown to the user.
 - The resulting sequence $\frac{x_0}{m}, \frac{x_1}{m}, \dots$ is approximately uniformly distributed between 0 and 1, including 0, not including 1.
 - For example, Java uses $m = 2^{48}$, a = 25214903917, and c = 11.
 - MATLAB uses another more complicated algorithm called Mersenne Twister.

Random Number Generation

- rand() generates a uniform random number between 0 and 1, including 0, not including 1.
- rand() * u generates a uniform random number between 0 and u, including 0, not including u.
- rand() * (u l) + l generates a uniform random number between l and u, including l, not including u.
- rand(n, m) creates an $n \times m$ matrix of random numbers between 0 and 1.

Integer Random Numbers

- randi(n) generates a uniform random integer between 1 and n, including 1 and n.
- randi ([1, u]) generates a uniform random integer between I and u, including I and u.
- randperm(n) generates a random permutation of 1:n.
- randperm(n, k) with $k \le n$ generates a random sample from 1:n of size k, sampled without replacement.

Random Variable, Discrete

- A discrete random variable is a random variable that takes on a finite (or countable) number of values with positive probabilities.
- The probability that the random variable X takes on value x in $\{1, 2, 3, ...\}$ is denoted by $f(x) = \mathbb{P}\{X = x\}$. The function f is called the probability mass function.
- A random number generated based on the probabilities specified by f is called a realization of the X.

Cumulative Distribution Functions, Discrete

 The cumulative probability that the random variable X takes on value less than x is denoted by

$$F(x) = \mathbb{P}\{X \le x\} = \sum_{i=1}^{x} \mathbb{P}\{X = i\}$$
. The function F is called the cumulative distribution function (CDF).

- The CDF can be efficiently computed using a for loop.
- **1** $F(1) = \mathbb{P}\{X = 1\}.$
- **2** $F(x) = F(x-1) + \mathbb{P}\{X = x\}, x > 1.$

Inverse Transform Sampling

- The inverse transform sampling (also called CDF inversion method) can be use to generate a realization of the random variable X.
- Generate $u \sim \text{Uniform}(0,1)$.
- ② Compute CDF of X, call it F(x).
- **3** Find the largest x such that F(x) < u.

For Loop, Review

- Use a for loop to compute the CDF based on the probabilities stored in a vector p, where $p_i = \mathbb{P}\{X = i\}, i = 1, 2, ..., n$.
- **2** f(1) = p(1);
- **3** for t = 1:n
- end
 - cumsum(x) finds the same CDF.

While Loop

- A while loop is used when the loop stops after an unknown number of iterations until some condition is met.
- Use a while loop to compute the inverse of the CDF stored in a vector f, where $f_i = \mathbb{P} \{X \leq i\}$.
- **1** t = 1;
- 2 while f(t) <= x
- t = t + 1;
- end
- $sum(f \le x) + 1$ or find(x < f, 1) finds the same inverse CDF.

- cumsum([0.3, 0.4, 0.3])
- *A* : 1
- B: **0.7** 1
- C: 0.3 0.7 1

Random Variable, Realization

- **1** cdf = cumsum([0.3, 0.4, 0.3]);
- ② rng(0); u = rand(); % it has value u = 0.8147
- **3** sum(cdf <= u) + 1
 - A:0
 - B:1
 - C:2
 - D:3

Random Variable, Realization

- **1** cdf = cumsum([0.3, 0.4, 0.3])
- ② rng(1); u = rand(); % it has value u = 0.4170
- **3** sum(cdf <= u) + 1
 - A:0
 - B:1
 - C:2
 - D:3

Random Variable, Continuous

- A continuous random variable is a random variable that takes on uncountably infinite number of values.
- The (theoretical) probability that the random variable is equal to any number is 0.
- Inverse transform sampling can also be used to generate a random value of the variable.

Cumulative Distribution Functions, Continuous

- The CDF of a distribution X taking values $(-\infty, \infty)$ is given by $F(x) = \mathbb{P}\{X \leq x\}$.
- The derivative of this function is called the probability density function f(x) = F'(x), meaning $F(x) = \int_{-\infty}^{x} f(\hat{x}) d\hat{x}$.
- More details in the next next lecture.

Simulation Math

 Direct computation of the probability of an event is sometimes difficult, and simulation can be used to approximate this probability by repeating the same random process a large number of times and find the fraction of times the event occurs.

Simulation, Equal

- (Estimate the probability that the values from two dice are the same.)
- $\bullet \approx 0.1667$
- B : mean(rand(1, 1000) * 6 == rand(1, 1000) * 6)
- C: mean(randi(6, 1, 1000) == randi(6, 1, 1000))

Simulation, Sum

- (Estimate the probability that the values from two dice sum up to an odd number.)
- $\bullet \approx 0.5$
- B: mean(mod(randi(12, 1, 1000), 2) == 1)
- C: mean(mod(randi(6, 1, 1000) + randi(6, 1, 1000), 2) == 1)

Simulation, Geometric

- (Estimate the average number of times it takes to throw a die until it lands six.)
- $\bullet \approx 6$
- **1** s = zeros(1, 1000);
- **2** for t = 1:1000
 - B: while randi(6) == 6
 - C: while randi(6) $\tilde{}=6$
- end
- \bullet end; mean(s) + 1

Simulation, Geometric Again Quiz

• (Estimate the average number of times it takes to throw a loaded die with probabilities $\begin{bmatrix} 0.1 & 0.2 & 0.4 & 0.2 & 0 & 0.1 \end{bmatrix}$ until it lands six.)

- ≈ **10**
- **2** for t = 1:1000
- B: while rand() ≤ 0.9
- C: while rand() > 0.9
- 6 end
- **6** end; mean(s) + 1

Simulation, Geometric General

- **1** s = zeros(1, 1000);
- **2** for t = 1:1000
 - The following conditions are more general (with $cdf = [0.1 \ 0.2 \ 0.4 \ 0.2 \ 0 \ 0.1]$)
 - while sum(cumsum(cdf) <= rand()) + 1 == 6
 - while find (rand() < cumsum(cdf), 1) == 6
- s(t) = s(t) + 1;
- 6 end
- \bullet end; mean(s) + 1

Reproducibility

- The same code can produce a different output every time it is excuted.
- In order to make a simulation reproducible, the best practice is to always set a seed at the beginning of the simulation using rng(seed).