CS540 Introduction to Artificial Intelligence Lecture 10

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 8, 2020

•000

Joint Distribution

Motivation

• The joint distribution of X_j and $X_{j'}$ provides the probability of $X_j = x_j$ and $X_{j'} = x_{j'}$ occur at the same time.

$$\mathbb{P}\left\{X_{j} = X_{j}, X_{j'} = X_{j'}\right\} \in \left[0, 1\right]$$

• The marginal distribution of X_j can be found by summing over all possible values of $X_{j'}$.

$$\mathbb{P}\left\{X_{j}=x_{j}\right\} = \sum_{x \in X_{j'}} \mathbb{P}\left\{X_{j}=x_{j}, X_{j'}=x\right\}$$

Conditional Distribution

Motivation

Suppose the joint distribution is given.

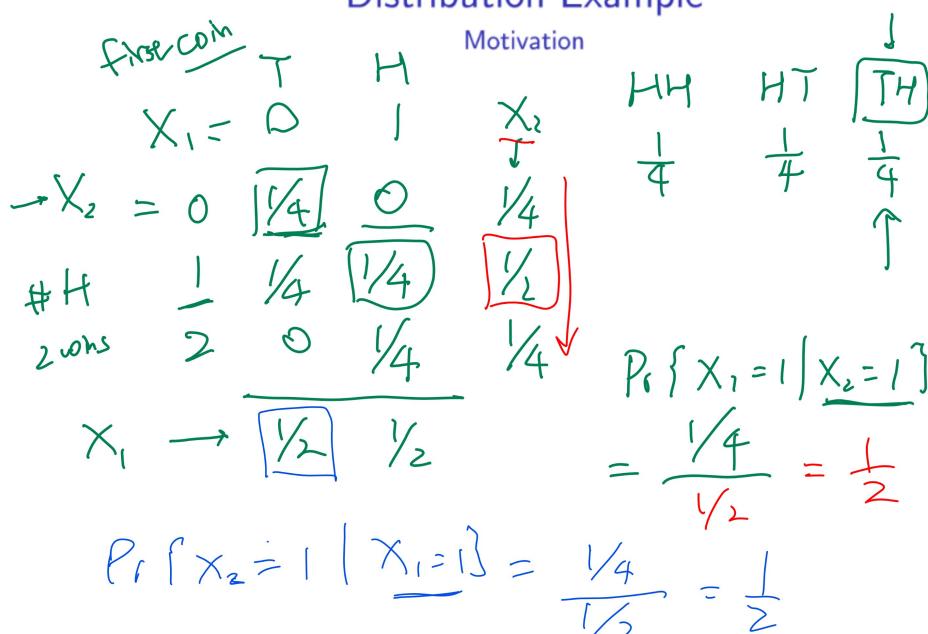
$$\mathbb{P}\left\{X_{j}=x_{j},X_{j'}=x_{j'}\right\}$$

• The conditional distribution of X_j given $X_{j'} = x_{j'}$ is ratio between the joint distribution and the marginal distribution.

$$\mathbb{P}\left\{X_{j}=x_{j}|X_{j'}=x_{j'}\right\}=\frac{\mathbb{P}\left\{X_{j}=x_{j},X_{j'}=x_{j'}\right\}}{\mathbb{P}\left\{X_{j'}=x_{j'}\right\}}$$

$$\text{Marg Mod}$$

Distribution Example



Notation

Motivation

 The notations for joint, marginal, and conditional distributions will be shortened as the following.

$$\mathbb{P}\left\{x_{j}, x_{j'}\right\}, \mathbb{P}\left\{x_{j}\right\}, \mathbb{P}\left\{x_{j}|x_{j}\right\}$$

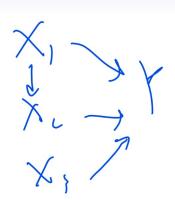
$$\mathbb{P}\left\{x_{j}, x_{j'}\right\}, \mathbb{P}\left\{x_{j}|x_{j}\right\}$$

$$\mathbb{P}\left\{x_{j}, x_{j'}\right\}, \mathbb{P}\left\{x_{j}|x_{j}\right\}$$

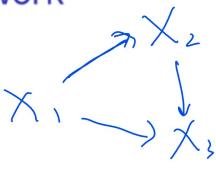
$$\mathbb{P}\left\{x_{j}|x_{j}\right\}$$

• When the context is not clear, for example when $x_j = a, x_{j'} = b$ with specific constants a, b, subscripts will be used under the probability sign.

$$\mathbb{P}_{X_j,X_{j'}}\{a,b\}\,,\mathbb{P}_{X_j}\{a\}\,,\mathbb{P}_{X_j|X_{j'}}\{a|b\}$$



Bayesian Network



- A Bayesian network is a directed acyclic graph (DAG) and a set of conditional probability distributions.
- Each vertex represents a feature X_j.
- Each edge from X_j to $X_{j'}$ represents that X_j directly influences $X_{j'}$.
- No edge between X_j and $X_{j'}$ implies independence or conditional independence between the two features.

Conditional Independence

Definition

• Recall two events A, B are independent if:

$$\underbrace{\mathbb{P}\{A,B\}}_{} = \underbrace{\mathbb{P}\{A\}\,\mathbb{P}\{B\}}_{} \text{ or } \underbrace{\mathbb{P}\{A|B\}}_{} = \mathbb{P}\{A\}$$

 In general, two events A, B are conditionally independent, conditional on event C if:

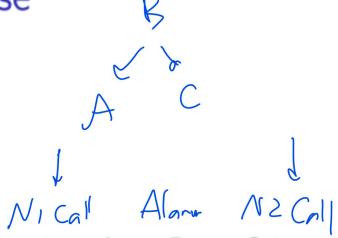
Causal Chain

Definition

• For three events A, B, C, the configuration $A \rightarrow B \rightarrow C$ is called causal chain.

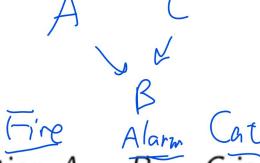
- In this configuration, A is not independent of C, but A is conditionally independent of C given information about B.
- Once B is observed, A and C are independent.

Common Cause



- For three events A, B, C, the configuration $A \leftarrow B \rightarrow C$ is called common cause.
- In this configuration, A is not independent of C, but A is conditionally independent of C given information about B.
- Once B is observed, A and C are independent.

Common Effect

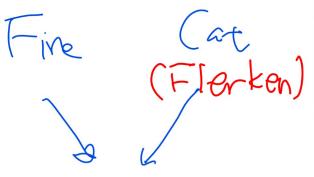


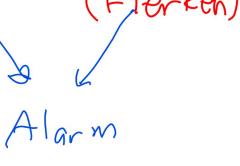
- For three events A, B, C, the configuration $A \rightarrow B \leftarrow C$ is called common effect.
- In this configuration, A is independent of C, but A is not conditionally independent of C given information about B.
- Once B is observed, A and C are not independent.

Storing Distribution

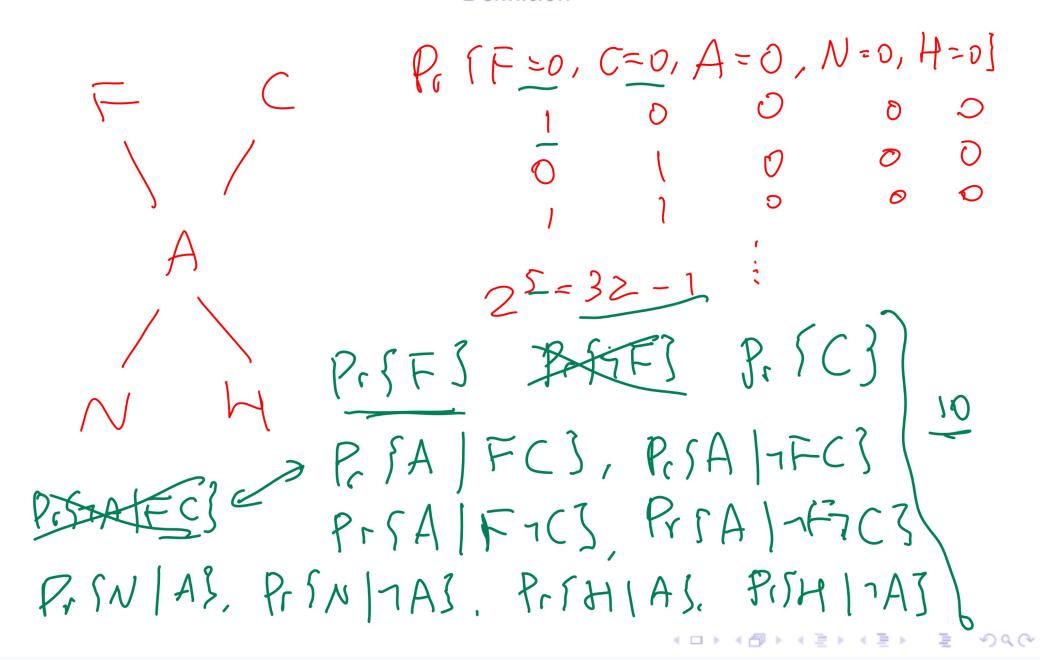
- If there are m binary variables with k edges, there are 2^m joint probabilities to store.
- There are significantly less conditional probabilities to store.
 For example, if each node has at most 2 parents, then there are less than 4m conditional probabilities to store.
- Given the conditional probabilities, the joint probabilities can be recovered.

Conditional Probability Table Diagram





Conditional Probability Table Example



Conditional Probability Table Larger Example Definition

Training Bayes Net

Definition

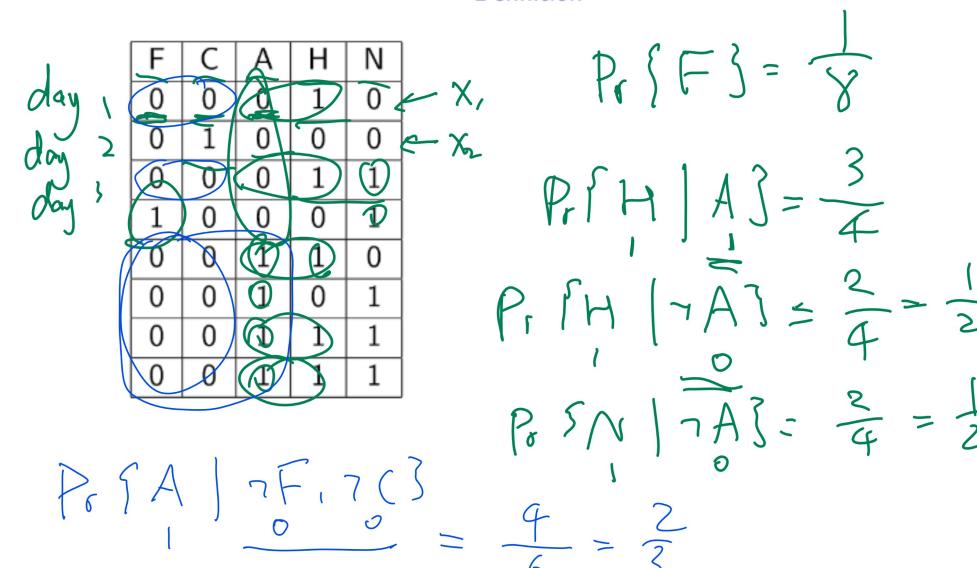
 Training a Bayesian network given the DAG is estimating the conditional probabilities. Let P(X_j) denote the parents of the vertex X_j, and p(X_j) be realizations (possible values) of P(X_j).

$$\mathbb{P}\left\{x_{j}|p\left(X_{j}\right)\right\},p\left(X_{j}\right)\in P\left(X_{j}\right)$$

 It can be done by maximum likelihood estimation given a training set.

$$\hat{\mathbb{P}}\left\{x_{j}|p\left(X_{j}\right)\right\} = \frac{c_{x_{j},p\left(X_{j}\right)}}{c_{p\left(X_{j}\right)}}$$

Bayes Net Training Example, Part I



Bayes Net Training Example, Part II Definition

Laplace Smoothing

Definition

 Recall that the MLE estimation can incorporate <u>Laplace</u> smoothing.

$$\hat{\mathbb{P}}\left\{x_{j}|p\left(X_{j}\right)\right\} = \frac{c_{x_{j},p}(x_{j})+1}{c_{p}(x_{j})+|X_{j}|} \qquad \begin{array}{c} \left|C_{x_{j}}\right| & \left|C_{x_{j}}\right| \\ \left|C_{x_{j}}\right| & \left|C_{x_{j}}\right| \\ & = \frac{C_{x_{j},p}(x_{j})+|X_{j}|}{C_{p}(x_{j})+|X_{j}|} \end{array}$$

- Here, $|X_j|$ is the number of possible values (number of categories) of X_j .
- Laplace smoothing is considered regularization for Bayesian networks because it avoids overfitting the training data.

Bayes Net Inference

Definition

 Given the conditional probabilitiy table, the joint probabilities can be calculated using conditional independence.

$$\mathbb{P}\{x_{1}, x_{2}, ..., x_{m}\} = \mathbb{P}\{x_{j} | x_{j+1}, x_{j+2}, ..., j_{m}\}$$

$$= \prod_{j=1}^{m} \mathbb{P}\{x_{j} | p(X_{j})\}$$

 Given the joint probabilities, all other marginal and conditional probabilities can be calculated using their definitions.

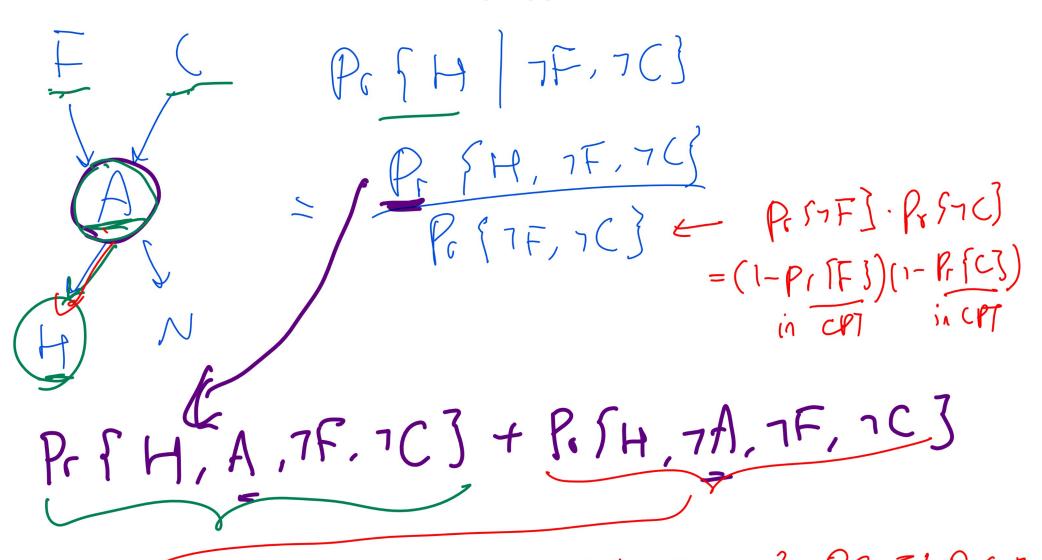
$$\mathbb{P}\left\{x_{j}|x_{j'},x_{j''},\ldots\right\} = \frac{\mathbb{P}\left\{x_{j},x_{j'},x_{j''},\ldots\right\}}{\mathbb{P}\left\{x_{j'},x_{j''},\ldots\right\}}$$

$$\mathbb{P}\left\{x_{j},x_{j'},x_{j''},\ldots\right\} = \sum_{X_{k}:k\neq j,j',j'',\ldots} \mathbb{P}\left\{x_{1},x_{2},\ldots,x_{m}\right\}$$

$$\mathbb{P}\left\{x_{j'},x_{j''},\ldots\right\} = \sum_{X_{k}:k\neq j',j'',\ldots} \mathbb{P}\left\{x_{1},x_{2},\ldots,x_{m}\right\}$$

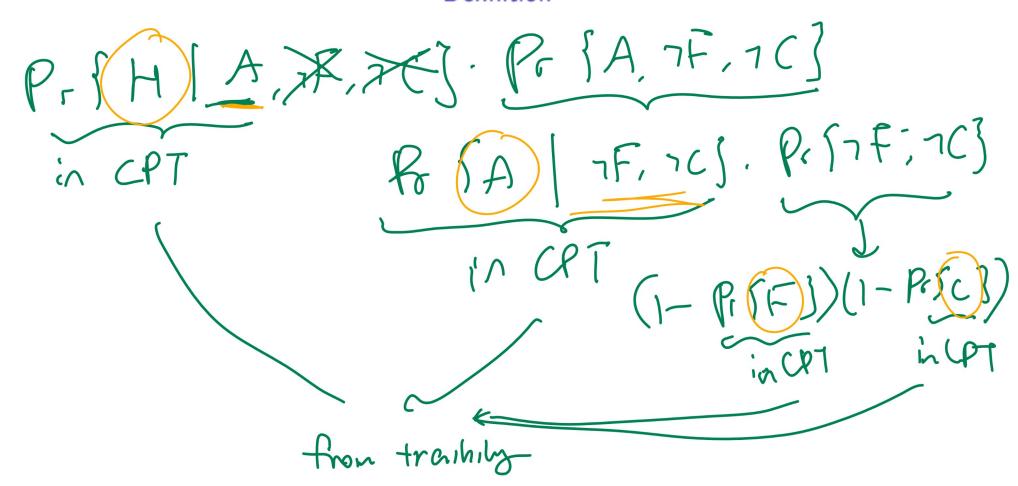
Bayes Net Inference Example, Part I

Definition



GPGFHITAJ. PGFA/7F,1C3. PGF7FJ.PGC]

Bayes Net Inference Example, Part II



Bayes Net Inference Example, Part III Definition

Bayesian Network

Algorithm

- Input: instances: $\{x_i\}_{i=1}^n$ and a directed acyclic graph such that feature X_i has parents $P(X_i)$.
- Output: conditional probability tables (CPTs): $\hat{\mathbb{P}}\{x_j|p(X_j)\}$ for j=1,2,...,m.
- Compute the transition probabilities using counts and Laplace smoothing.

$$\widehat{\mathbb{P}}\left\{x_{j}|p\left(X_{j}\right)\right\} = \frac{c_{x_{j},p\left(X_{j}\right)}+1}{c_{p\left(X_{j}\right)}+|X_{j}|}$$

Network Structure

- Selecting from all possible structures (DAGs) is too difficult.
- Usually, a Bayesian network is learned with a tree structure.
- Choose the tree that maximizes the likelihood of the training data.

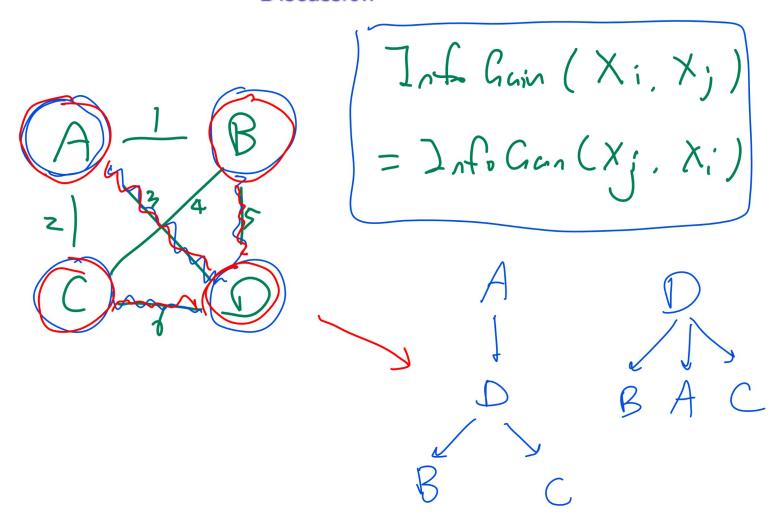
Chow Liu Algorithm

- Add an edge between features X_j and X_{j'} with edge weight equal to the information gain of X_j given X_{j'} for all pairs j, j'.
- Find the maximum spanning tree given these edges. The spanning tree is used as the structure of the Bayesian network.

Aside: Prim's Algorithm

- To find the maximum spanning tree, start with an arbitrary vertex, a vertex set containing only this vertex, V, and an empty edge set, E.
- Choose an edge with the maximum weight from a vertex $v \in V$ to a vertex $v' \notin V$ and add v' to V, add an edge from v to v' to E
- Repeat this process until all vertices are in V. The tree (V, E) is the maximum spanning tree.

Aside: Prim's Algorithm Diagram



Classification Problem

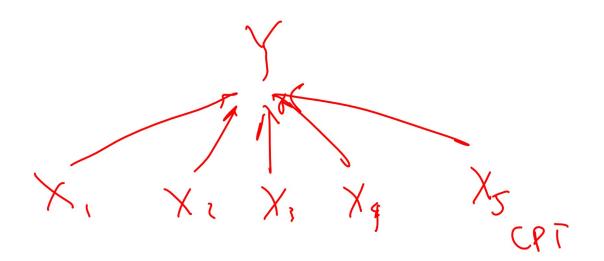
- Bayesian networks do not have a clear separation of the label Y and the features $X_1, X_2, ..., X_m$.
- The Bayesian network with a tree structure and Y as the root and $X_1, X_2, ..., X_m$ as the leaves is called the Naive Bayes classifier.
- Bayes rules is used to compute $\mathbb{P}\{Y = y | X = x\}$, and the prediction \hat{y} is y that maximizes the conditional probability.

$$\hat{y}_i = \arg\max_{y} \mathbb{P}\{Y = y | X = x_i\}$$

$$P_f[Y = y, X = x_i]$$

$$P_f[X = x_i]$$

Naive Bayes Diagram



Multinomial Naive Bayes

Discussion

• The implicit assumption for using the counts as the maximum likelihood estimate is that the distribution of $X_j | Y = y$, or in general, $X_j | P(X_j) = p(X_j)$ has the multinomial distribution.

$$\mathbb{P}\left\{\underbrace{X_{j} = x | Y = y}_{C}\right\} = p_{X}$$

$$\hat{p}_{X} = \frac{c_{X,X}}{c_{Y}}$$

Gaussian Naive Bayes

- If the features are not categorical, continuous distributions can be estimated using MLE as the conditional distribution.
- Gaussian Naive Bayes is used if $X_i|Y=y$ is assumed to have the normal distribution.

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \mathbb{P} \left\{ x < X_j \le x + \varepsilon | Y = y \right\} = \underbrace{\frac{1}{\sqrt{2\pi} \sigma_y^{(j)}}}_{\mathcal{F}} \exp \left(-\frac{\left(x - \mu_y^{(j)} \right)^2}{2 \left(\sigma_y^{(j)} \right)^2} \right)$$

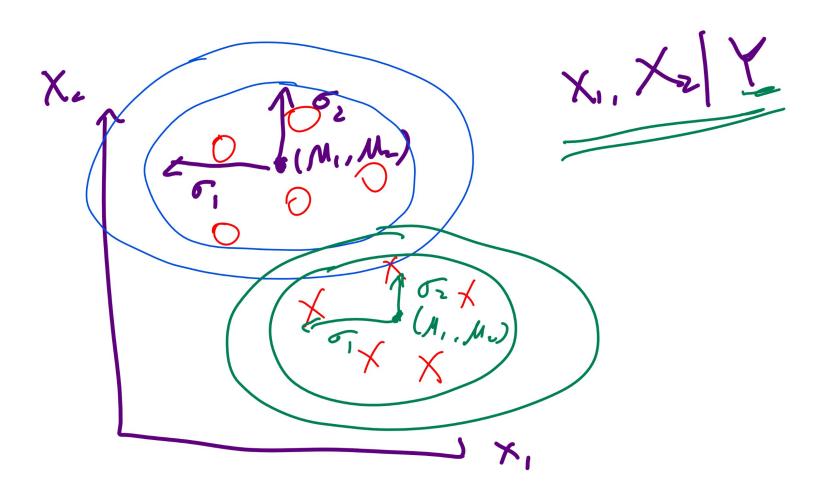
Gaussian Naive Bayes Training

- Training involves estimating $\mu_y^{(j)}$ and $\sigma_y^{(j)}$ since they completely determines the distribution of $X_i | Y = y$.
- The maximum likelihood estimates of $\mu_y^{(j)}$ and $\left(\sigma_y^{(j)}\right)^2$ are the sample mean and variance of the feature j.

$$\hat{\mu}_{y}^{(j)} = \frac{1}{n_{y}} \sum_{i=1}^{n} (x_{ij}) \mathbb{1}_{\{y_{i} = y\}}, n_{y} = \sum_{i=1}^{n} \mathbb{1}_{\{y_{i} = y\}}$$

$$(\hat{\sigma}_{y}^{(j)})^{2} = \frac{1}{n_{y}} \sum_{i=1}^{n} (x_{ij} - \hat{\mu}_{y}^{(j)})^{2} \mathbb{1}_{\{y_{i} = y\}}$$
sometimes
$$(\hat{\sigma}_{y}^{(j)})^{2} \approx \frac{1}{n_{y} - 1} \sum_{i=1}^{n} (x_{ij} - \hat{\mu}_{y}^{(j)})^{2} \mathbb{1}_{\{y_{i} = y\}}$$

Gaussian Naive Bayes Diagram



Tree Augmented Network Algorithm

- It is also possible to create a Bayesian network with all features X₁, X₂, ..., X_m connected to Y (Naive Bayes edges) and the features themselves form a network, usually a tree (MST edges).
- Information gain is replaced by conditional information gain (conditional on Y) when finding the maximum spanning tree.
- This algorithm is called TAN: Tree Augmented Network.

Tree Augmented Network Algorithm Diagram

