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Joint Distribution

Motivation

@ The joint distribution of X; and Xj provides the probability of
X;j = x; and Xj; = xj» occur at the same time.

P j <0, Xp2 0§ =
P{X; = x;, Xy = x } ) -
o l =

l [

@ The marginal distribution of X; can be found by summing
over all possible values of Xj:. . O} P X 0 ?< )20)

P{X; = x} = ZP{XJZXJHXJ’ZX} HHXJ U’XJ y

XEXJ-/
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Conditional Distribution

Motivation

@ Suppose the joint distribution is given.

]P’{)O=XJ»XJ'(=)XJ'} ——
. o9, Xi' °0 <\
\3rYX‘7OlX"7°ST (S_)(_) it — \‘)
NI S Pixji=oy  we=ighal
@ The conditional distribution of X; given Xj; = x; is ratio
between the joint distribution and the marginal distribution.

P X':X',X'I:XV
R e
J J
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Notation
Motivation

@ The notations for joint, marginal, and conditional distributions
will be shortened as the following.

P {x, %} P {x}, P {xlx}

e Jod
o When the context is not clear, for example when
Xj = a, xj = b with specific constants a, b, subscripts will be
used under the probability sign.

]P)XJ-,XJ-/ {3, b} 7]P)XJ {3} 3PXJ'XJ-/ {alb}
S —
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Conditional Probability Example
Quiz (Graded)

\“[, ‘Hus ave all lDt'/\argf
= = X
o 2017 Fall Final Q3 Pr 1435 ) X =0, X0}

e Given the counts, find the MLE (no smoothing) of /
P { saw sheep @rainy,ﬁwarm}. e, { A )“7><, A ng

rainy | warm | sheep | ¢ | rainy | warm | sheep | c X
( N N q_ \ //1\\ Y N N 1
{ N N_J YONO0/ Y N Y |1
Y \ 0| Y Y N 1
N Y Y 4| Y Y Y 2 o
7
P

@B: % , C: %' D: %' E: 1 J ( >, v, ‘7%)1*-» Coni,reo, e
Pr i, 9l C s ot



Probability Distributions Bayesian Network Naive Bayes
0000 9000000000000 O00O0O00OO0OO0O000 00000000

Bayesian Network Diagram

Definition

@ Story: You are travelling. There may be a Fire problem or a
Cat problem at home. Either problem might trigger an Alarm.
In case of Alarm, your neighbors Nick or Happy or both might
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Bayesian Network

Definition

e A Bayesian network is a directed graph (DAG) and a
set of conditional probability distributions.

e Each vertex represents a feature ,-)S.L

o Each edge from X; to X represents that X; directly influences
X
J

@ No edge between X; and X; implies independence or

conditional independence between the two features.
T E—————— < C
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Conditional Independence

Definition

@ Recall two events A, B are independent if:

P{A,B} = P{A} P{B} or P{A|B} = P {A]}

— = {A,b
S Pr1A (B = R"PE;G leAI

@ In general, two events A, B are conditionally independent,ﬁ
conditional on event C if:

P{A, B|C} = P{A|C}P{B|C)} or P{A|B, C} = P {A|C)

fcs/\ R,y Ny
PB.C)
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Causal Chain

Definition

C
Ajlﬁ‘
g

@ For three events A, B, C, the configuration A — B — C is
called causal chain. - -

—

@ In this configuration, A is not independent of C, but A is
conditionally independent of C given information about B.

@ Once B is observed, A and C are independent.
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Common Cause

Definition

(3
N
A C
@ For three events A, B, C, the configuration A« B — C is
called common cause.

@ In this configuration, A is not independent of C, but A is
conditionally independent of C given information about B.

@ Once B is observed, A and C are independent.
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Common Effect

Definition

A C
N,
>
@ For three events A, B, C, the configuration A —» B «— C is

called common effect.

@ In this configuration, A is independent of C, but A is not
conditionally independent of C given information about B.

@ Once B is observed, A and C are not independent.
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Storing Distribution

Definition

e |f there are m binary variables with k edges, there are 2 joint
probabilities to store.

e There are significantly less conditional probabilities to store.
For example, if each e has at most 2 parents, then there
are less than 4m conditional probabilities to store.

e Given the conditional probabilities, the joint probabilities can
be recovered.
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Conditional Probability Table Diagram
P’J”\::\S \')(SC—;IS O
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Training Bayes Net

Definition

e Training a Bayesian network given the DAG is estimating the
conditional probabilities. Let P (X;) denote the parents of the

vertex Xj, and p (X;) be realizations (possible values) of
P (X).

P{xj|p (Xj)},p(Xj) € P(X;)

@ |t can be done by maximum likelihood estimation given a
training set. i

=
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Bayes Net Training Example, Training, Part |

Definition

e Given a network and the training data.
F->AC-o>AA->HA->N.

FIC|A|H|N
0/0(0]1|0
0(1]0]0]Q0
0/0]0] 1|1
110]0]0]|1
0701 ]1]0Q0
070101
00 ]1]1]1
001 |1]1
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Bayes Net Training Example, Training, Part |l

Definition
Ce=1 A
oCompute@{F=1}@ T 3
— [E[C[A[H]N
(oko 0[1]0
0/1(0|0]0
olojo0|1]1
ajofofof1
0f0[1]1]0
0f0[1|0]|1
offof1|1]1
o/ 0|1|1]1
-
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Bayes Net Training Example, Training, Part |l

Definition
CZ’&~& =\ / ﬁ%':7<7 ~ é%?
e Compute IIA’{H = 1|A = 0} ﬁ
FIC[A[HI[N _\
00 vO\_i 0 T
0/1)0]0]|0
0 0\0 1|1
1]0[\0/[0]1
001,110
0(0|1,01|1
0o(0|1 1|1
001 1]|1
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Bayes Net Training Example, Training, Part IV
Quiz (Graded)

o What is the conditional probability P {H = 1|A = 1}?

1 3 €

C

1
oA:O,B:Z,C3§.D3Z-E:1 /‘P{THOLA@[
(A=}
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Bayes Net Training Example, Training, Part V

Definition

o Compute P{A=1|F =0,C = 1}.

O Q| Q| Q| O O &1
OO OO0 O| =[O NM
=== = OO o O >
HPR O OO~ 1T
RlRr RO R R OO 2
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Bayes Net Training Example, Training, Part VI
Quiz (Graded)

e What is the condltlonal probability P{A = 1|F =0, C = 0}

oA.O,B.% c— D.%,E.l /‘

ATATH] @ A=1[FeL S
o[1]0 —
0/0]0

0 O 1 C/F-tl,C-"I
1110

101

111

111
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Laplace Smoothing

Definition

@ Recall that the MLE estimation can incorporate Laplace
smoothing.

Sp(X;) T !
w0 T &S g

e Here, |X;| is the number of possible values (number of J
categories) of X

e Laplace smoothing is considered regularization for Bayesian
networks because it avoids overfitting tﬁe training data.

P {x|p(X;)} =
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Bayes Net Inference Example, Part |

Definition

@ Assume the network is trained on a larger set with the
following CPT. Compute P{F =1|H =1, N = 1}7

P{F =1} =0.001,P{C =1} = 0.001
P{A=1F=1,C=1}=0095P{A=1|F =1,C =0} =0.94
P{A=1/F=0,C =1} =029,P{A=1|F =0,C = 0} = 0.00

P{H=1A=1}=0.9,P{H =1|A =0} = 0.05
P{N=1A=1} =0.7,P{N =1|A =0} = 0.01
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Bayes Net Inference Example, Part |l

P;?\J‘H/\)i 7]9 F g
PVS?:" ’ H-o)/!\)f’”‘f Q(i F:O ,a’\’/l/ NDLS U

- N
VXWS P SEm o AL g

Deflnltlon

o Compute P{F=1|H=1,N=1}?

T HN A C

'\ | ) © 9 — P(E=)§ pric=)
O ¢- (A=0|F=1,C0f
l
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=<1, vBayes Net Inference Example, Part |l
@rg Ny My Sefinie
(_—: C A /\j Helm Ion @,06
0 o .\, &— oo\ 0. @A 0K
\ 0 \ i ] &=
. B ‘ )
L F—OOOl]P’C—OOO
P AF{C} }
{Al } = 0.94 {A/O \‘JCA\
P {A|~F,C} =0.29, A|—1F ﬁC} — 0.00 =004
B {H|A} = 0.9, P {H|-A} = 0.05
P{N|A} = 0.7, P {N|-A} —001
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Bayes Net Inference Example, Part IV

Definition

e Which of the following probabilies (multiple) are not required
to compute P{C =1H=1,N =1}7

o A:P{A=1|F =1,C =1} = 0.95
o B:P{A=1|F =1,C =0} =0.94
o C:P{A=1|F=0,C=1}=0.29
o D:P{A=1|F =0,C =0} = 0.00

@ E: none of the above.
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Bayes Net Inference Example, Part V

Definition

} =0.001,P{C} = 0.001
} =0.95P{A|F,—~C} = 0.94
P{A|—F,C} = 0.29,P{A|—~F,—~C} = 0.00
P {H|A} = 0.9, {H|-A} = 0.05

P } =0.7,P{N|-A} = 0.01
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Common Cause Example, Part |
Quiz (Graded)

Vé. 2005 Fall Final Q20, 2006 Fall Final Q20

@ Suppose A is the common cause of B and C. All variables are
binary. What is P{C = 1|B = 1}7

P{A=1}=04,P{B=1A=1}=09,P{B=1A=0}=0.38
P{C=1/A=1}=05P{C =1|A=0} = 0.2 A

RN
B

C
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Common Cause Example, Part |l
Quiz (Graded)

@ Suppose A is the common cause of B and C. All variables are
binary. What is P{B = 1|C = 1}7

P{A=1}=04P{B=1A=1}=09,P{B=1|A=0}=0.8
P{C=1A=1}=05P{C =1]A=0} =0.2

- 09-04-05-04+0.8-0.6-0.2-0.6

o A:
04-05+0.6-0.2
| 09-04-05+0.8-0.6-0.2

e B:
04-054+0.6-0.2
- 0.9:054+0.8-0.2

o C:
0.5+0.2
@ D:09-0.4+0.8-0.6, E: none of the above
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Bayesian Network

Algorithm
5 | RY-YN

e Input: instances: {x;}’_; and a directed acyclic graph such
that feature X; has parents P (Xj).
— .
e Output: conditional probability tables (CPTs): P {x;|p (X;)}
for j =1,2,...,m.

e Compute the transition probabilities using counts and Laplace
smoothing.

C (Xj)+1

A B Xj,P
]P{X_llp(X/)} o Cp(Xj) +|)<J| 5-}
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Network Structure

Discussion

e Selecting from all possible structures (DAGs) is too difficult.

e Usually, a Bayesian network is learned with a tree structure.

@ Choose the tree that maximizes the likelihood 03 the training

data.
F §/ b/\\lﬁ are ?Weﬂt,
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Chow Liu Algorithm

Discussion

%QX \Xw \/\<7<"> —H (X ><> Ko

va-leP:Xy”\ 5. P «x>+2- % a0

Yoo &=
e Add an edge between features X; and Xj wuth edge weight L"S’ M’(

equal to the information _gain of XJ given Xy for all pairs j. j'. %)*t’q
@ Find the maximum spanning tree given these edges. The
spanning tree is used as the structure of the Bayesian network.

MG(S“"" & AjW\C,

%tzc @e&ih\v/mee |
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Aside: Prim’s Algorithm

Discussion

@ To find the maximum spanning tree, start with an arbitrary

vertex, a vertex set containing only this vertex, V/, and an
empty edge set, E.

@ Choose an edge with the maximum weight from a vertex

veE V toavertex v/ ¢ V and add v/ to V, add an edge from
vtov to E

@ Repeat this process until all vertices are in V. The tree
(V, E) is the maximum spanning tree.
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Aside: Prim’s Algorithm Diagram
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Classification Problem

Discussion

e Bayesian networks do_nQt have a clear separation of the label
Y and the features § X

@ The Bayesian network wi eg structure and Y as the root
and Xi, Xp, ..., X, as the leaves is called the Naive Bayes
classifier.

e Bayes rules is used to compute P{Y = y|X = x}, and the
prediction y is y that maximizes the conditional probability.
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Naive Bayes Diagram

Discussion

Trin o \(X Xl X
ot how X = | © | o |
P{g\{: ()\ l o lo | )
oy F3Y =1 | Lo det]
S:().m.y VerJ\lOIOIJ,
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Multinomial Naive Bayes

Discussion

@ The implicit assumption for using the counts as the maximum
likelihood estimate is that the distribution of X;|Y =y, or in
general, X;|P (X;) = p(X;) has the multinomial distribution.

P{Xj =x|Y =y} = px




Naive Bayes

Bayesian Network
jelel ) olel 00080000

Probability Distributions

Gaussian Naive Bayes

Discussion

e If the features are not categorical, continuous distributions
can be estimated using MLE as the conditional distribution.

e Gaussian Naive Bayes is used if X;|Y = y is assumed to have

the normal distribution.
oy 2
()

—exp | —
2#09)

1
im —P{x < Xj < x+e|Y,=y} =

e—0 =
SR > S
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Gaussian Naive Bayes Training

Discussion
e Training invol imati U) U g h
g involves estimating py” and oy’ since they

completely determines the distribution of X;|Y = y.

. .
@ The maximum likelihood estimates of ,uﬁf) and (05,1)) are the
sample mean and variance of the feature j.

g
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Gaussian Naive Bayes Diagram

Discussion
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Tree Augmented Network Algorithm

Discussion

e It is also possible to create a Bayesian network with all
features Xi, Xo, ..., X, connected to Y (Naive Bayes edges)
and the features themselves form a network, usually a tree
(MST edges).

e Information gain is replaced by conditional information gain
(conditional on Y') when finding the maximum spanning tree.

e This algorithm is called TAN: Tree Augmented Network.
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Tree Augmented Network Algorithm Diagram

Discussion

/ M)Nc‘hb«
/j \\9 i~ lectue

S Xy Y 0‘






