CS540 Introduction to Artificial Intelligence Lecture 10

Young Wu
Based on lecture slides by Jerry Zhu and Yingyu Liang

June 19, 2019

•000

Joint Distribution

Motivation

• The joint distribution of X_j and $X_{j'}$ provides the probability of $X_j = x_j$ and $X_{j'} = x_{j'}$ occur at the same time.

$$\mathbb{P}\left\{X_{j}=x_{j},X_{j'}=x_{j'}\right\}$$

$$\mathbb{P}\left\{X_{j}=0,X_{j'}=0\right\}$$

• The marginal distribution of X_j can be found by summing over all possible values of $X_{j'}$.

possible values of
$$X_{j'}$$
.

$$P_{\ell} \{ X_{j} = 0 \} = P_{\epsilon} \{ X_{j} : 0, X_{j'} : 0 \}$$

$$\mathbb{P} \{ X_{j} = x_{j} \} = \sum_{x \in X_{j'}} \mathbb{P} \{ X_{j} = x_{j}, X_{j'} = x \}$$

$$+ P_{\epsilon} \{ X_{j} : 0, X_{j'} : 0 \}$$

Conditional Distribution

Motivation

Suppose the joint distribution is given.

$$\mathbb{P}\left\{X_{j}=x_{j},X_{j'}=x_{j'}\right\}$$

$$\mathbb{P}\left\{X_{j}=x_{j},X_{j'}=x_{j'}\right\}$$

$$\mathbb{P}\left\{X_{j}=x_{j},X_{j'}=x_{j'}\right\}$$

$$\mathbb{P}\left\{X_{j}=x_{j},X_{j'}=x_{j'}\right\}$$

$$\mathbb{P}\left\{X_{j}=x_{j'},X_{j'}=x_{j'}\right\}$$

between the joint distribution and the marginal distribution.

$$\mathbb{P}\left\{X_{j} = x_{j} | X_{j'} = x_{j'}\right\} = \frac{\mathbb{P}\left\{X_{j} = x_{j}, X_{j'} = x_{j'}\right\}}{\mathbb{P}\left\{X_{j'} = x_{j'}\right\}}$$

Notation

Motivation

 The notations for joint, marginal, and conditional distributions will be shortened as the following.

$$\mathbb{P}\left\{x_{j}, x_{j'}\right\}, \mathbb{P}\left\{x_{j}\right\}, \mathbb{P}\left\{x_{j} | x_{j'}\right\}$$

$$\mathbb{P}\left\{x_{j}, x_{j'}\right\}, \mathbb{P}\left\{x_{j} | x_{j'}\right\}$$

• When the context is not clear, for example when $x_j = a, x_{j'} = b$ with specific constants a, b, subscripts will be used under the probability sign.

$$\mathbb{P}_{X_j,X_{j'}}\left\{a,b\right\},\underline{\mathbb{P}_{X_j}\left\{a\right\}},\mathbb{P}_{X_j|X_{j'}}\left\{a|b\right\}$$

Conditional Probability Example

Quiz (Graded)

2017 Fall Final Q3

If they are all binary

P, [X2=1, X=0, X=0]

• Given the counts, find the MLE (no smoothing) of \mathbb{P} { saw sheep \neg rainy, \neg warm }. $\mathbb{P}_{\ell} \{ X_3 \mid \neg X_1, \neg X_2 \}$

rainy	warm	sheep	С	rainy	warm	sheep	С
N	N	N	1	Y	N	N	1
N	N	Y	0	Υ	N	Y	1
N	Y	N	0	Υ	Y	N	1
N	Y	Y	4	Υ	Y	Y	2

• A: 0, B: $\frac{1}{4}$, C: $\frac{1}{3}$, D: $\frac{1}{2}$, E: 1

Pr (S, 7r, 7w) -> Cs=1, r=0, w=0

Pr (7r, 7w) Cr=0, w=0

Bayesian Network Diagram

Definition

 Story: You are travelling. There may be a Fire problem or a Cat problem at home. Either problem might trigger an Alarm.
 In case of Alarm, your neighbors Nick or Happy or both might

call you. dal Pr[F,C,A,N,H] Pr[F[N,H] 0 0 0 0 Prinif. C) 0

Bayesian Network

- Each vertex represents a feature X_j.
- Each edge from X_j to $X_{j'}$ represents that X_j directly influences $X_{j'}$.
- No edge between X_j and $X_{j'}$ implies independence or conditional independence between the two features.

Conditional Independence

Definition

• Recall two events A, B are independent if:

$$\mathbb{P}\{A,B\} = \mathbb{P}\{A\} \mathbb{P}\{B\} \text{ or } \mathbb{P}\{A|B\} = \mathbb{P}\{A\}$$

$$Pr(A|B) = \mathbb{P}\{A,B\}$$

$$Pr(A|B) = \mathbb{P}\{A,B\}$$

$$Pr(A|B) = \mathbb{P}\{A,B\}$$

 In general, two events A, B are conditionally independent, conditional on event C if:

$$\mathbb{P}\{A,B|C\} = \mathbb{P}\{A|C\}\mathbb{P}\{B|C\} \text{ or } \mathbb{P}\{A|B,C\} = \mathbb{P}\{A|C\}$$

$$PrSA_{B}CS = \mathbb{P}\{A|C\}$$

$$PrSB_{C}S$$

Causal Chain

- For three events A, B, C, the configuration $A \rightarrow B \rightarrow C$ is called causal chain.
- In this configuration, A is not independent of C, but A is conditionally independent of C given information about B.
- Once B is observed, A and C are independent.

Common Cause

- For three events A, B, C, the configuration $A \leftarrow B \rightarrow C$ is called common cause.
- In this configuration, A is not independent of C, but A is conditionally independent of C given information about B.
- Once B is observed, A and C are independent.

Common Effect

- For three events A, B, C, the configuration $A \rightarrow B \leftarrow C$ is called common effect.
- In this configuration, A is independent of C, but A is not conditionally independent of C given information about B.
- Once B is observed, A and C are not independent.

Storing Distribution

- If there are m binary variables with k edges, there are 2^m joint probabilities to store.
- There are significantly less conditional probabilities to store. For example, if each node has at most 2 parents, then there are less than 4m conditional probabilities to store.
- Given the conditional probabilities, the joint probabilities can be recovered.

Conditional Probability Table Diagram

Training Bayes Net

Definition

• Training a Bayesian network given the DAG is estimating the conditional probabilities. Let $P(X_j)$ denote the parents of the vertex X_j , and $p(X_j)$ be realizations (possible values) of $P(X_j)$.

$$\mathbb{P}\left\{x_{j}|p\left(X_{j}\right)\right\},p\left(X_{j}\right)\in P\left(X_{j}\right)$$

 It can be done by maximum likelihood estimation given a training set.

$$\widehat{\mathbb{P}}\left\{x_{j}|p\left(X_{j}\right)\right\} = \frac{c_{x_{j},p}(X_{j})}{c_{p}(X_{j})}$$

Bayes Net Training Example, Training, Part I

Given a network and the training data.

$$F \rightarrow A, C \rightarrow A, A \rightarrow H, A \rightarrow N.$$

F	С	Α	Н	N
0	0	0	1	0
0	1	0	0	0
0	0	0	1	1
1	0	0	0	1
0	0	1	1	0
0	0	1	0	1
0	0	1	1	1
0	0	1	1	1

Bayes Net Training Example, Training, Part II

Definition

• Compute $\mathbb{P}\{F=1\}$

F	С	Α	Н	N
0	0	0	1	0
0	1	0	0	0
0	0	0	1	1
	0	0	0	1
0	0	1	1	0
0	0	1	0	1
0	0	1	1	1
0	0	1	1	1

Bayes Net Training Example, Training, Part III

Definition

• Compute $\hat{\mathbb{P}} \{ H = 1 | A = 0 \}$

CH=1, A>0	ニ	2/4
CAN)

F	С	A	Н	N
0	0	0	1	0
0	1	0	0	0
0	0	0	1	1
1	0	0	0	1
0	0	1	1	0
0	0	1	0	1
0	0	1	1	1
0	0	1	1	1

Bayes Net Training Example, Training, Part IV

Quiz (Graded)

• What is the conditional probability $\hat{\mathbb{P}}\{H=1|A=1\}$?

• A: 0 , B: $\frac{1}{4}$, C: $\frac{1}{2}$, D: $\frac{3}{4}$, E: 1

F	С	Α	Н	Ν
0	0	0	1	0
0	1	0	0	0
0	0	0	1	1
1	0	0	0	1
0	0	U	1)	0
0	0	1	0	1
0	0	1	1	1
0	0	1	1	1

PF [H=1, A=1]

Bayes Net Training Example, Training, Part V

• Compute $\hat{\mathbb{P}} \{ A = 1 | F = 0, C = 1 \}.$

F	С	Α	Н	N
0	0	0	1	0
0	1	0	0	0
0	0	0	1	1
1	0	0	0	1
0	0	1	1	0
0	0	1	0	1
0	0	1	1	1
0	0	1	1	1

Bayes Net Training Example, Training, Part VI

Quiz (Graded)

• What is the conditional probability $\hat{\mathbb{P}}\{A=1|F=0,C=0\}$?

• A: 0 , B: $\frac{1}{3}$, C: $\frac{1}{2}$, D: $\frac{2}{3}$, E: 1

	F	7	Α	Н	N	
	0	0	0	1	0	
	0	1	0	0	0	
/	0	0	0	1	1	
	1	0	0	0	1	
	0	0	1	1	0	
	0	0	1	0	1	
	0	0	1	1	1	
	0	0	1	1	1	

Laplace Smoothing

 Recall that the MLE estimation can incorporate Laplace smoothing.

$$\hat{\mathbb{P}}\left\{x_{j}|p\left(X_{j}\right)\right\} = \frac{c_{x_{j},p}(x_{j})+1}{c_{p}(x_{j})+|X_{j}|}$$
the number of possible values (number of

- Here, $|X_j|$ is the number of possible values (number of categories) of X_j .
- Laplace smoothing is considered regularization for Bayesian networks because it avoids overfitting the training data.

Bayes Net Inference Example, Part I

• Assume the network is trained on a larger set with the following CPT. Compute $\hat{\mathbb{P}}\{F=1|H=1,N=1\}$?

$$\hat{\mathbb{P}}\{F=1\} = 0.001, \hat{\mathbb{P}}\{C=1\} = 0.001$$

$$\hat{\mathbb{P}}\{A=1|F=1, C=1\} = 0.95, \hat{\mathbb{P}}\{A=1|F=1, C=0\} = 0.94$$

$$\hat{\mathbb{P}}\{A=1|F=0, C=1\} = 0.29, \hat{\mathbb{P}}\{A=1|F=0, C=0\} = 0.00$$

$$\hat{\mathbb{P}}\{H=1|A=1\} = 0.9, \hat{\mathbb{P}}\{H=1|A=0\} = 0.05$$

$$\hat{\mathbb{P}}\{N=1|A=1\} = 0.7, \hat{\mathbb{P}}\{N=1|A=0\} = 0.01$$

Bayes Net Inference Example, Part II

• Compute $\hat{\mathbb{P}} \{ F = 1 | H = 1, N = 1 \}$?

Pr Feline Bayes Net Inference Example, Part III

Bayes Net Inference Example, Part IV

- Which of the following probabilies (multiple) are not required to compute $\hat{\mathbb{P}}\{C=1|H=1,N=1\}$?
- A: $\hat{\mathbb{P}} \{ A = 1 | F = 1, C = 1 \} = 0.95$
- B: $\hat{\mathbb{P}} \{ A = 1 | F = 1, C = 0 \} = 0.94$
- C: $\hat{\mathbb{P}} \{ A = 1 | F = 0, C = 1 \} = 0.29$
- D: $\hat{\mathbb{P}}\{A=1|F=0,C=0\}=0.00$
- E: none of the above.

Bayes Net Inference Example, Part V

$$\hat{\mathbb{P}}\{F\} = 0.001, \hat{\mathbb{P}}\{C\} = 0.001$$

$$\hat{\mathbb{P}}\{A|F,C\} = 0.95, \hat{\mathbb{P}}\{A|F,\neg C\} = 0.94$$

$$\hat{\mathbb{P}}\{A|\neg F,C\} = 0.29, \hat{\mathbb{P}}\{A|\neg F,\neg C\} = 0.00$$

$$\hat{\mathbb{P}}\{H|A\} = 0.9, \hat{\mathbb{P}}\{H|\neg A\} = 0.05$$

$$\hat{\mathbb{P}}\{N|A\} = 0.7, \hat{\mathbb{P}}\{N|\neg A\} = 0.01$$

Common Cause Example, Part I

Quiz (Graded)

- 2005 Fall Final Q20, 2006 Fall Final Q20
 - Suppose A is the common cause of B and C. All variables are binary. What is $\mathbb{P}\left\{C=1|B=1\right\}$?

$$\mathbb{P}\{A=1\} = 0.4, \mathbb{P}\{B=1|A=1\} = 0.9, \mathbb{P}\{B=1|A=0\} = 0.8$$

 $\mathbb{P}\{C=1|A=1\} = 0.5, \mathbb{P}\{C=1|A=0\} = 0.2$

Common Cause Example, Part II

Quiz (Graded)

• Suppose A is the common cause of B and C. All variables are binary. What is $\mathbb{P}\{B=1|C=1\}$?

$$\mathbb{P}\{A=1\} = 0.4, \mathbb{P}\{B=1|A=1\} = 0.9, \mathbb{P}\{B=1|A=0\} = 0.8$$

$$\mathbb{P}\{C=1|A=1\} = 0.5, \mathbb{P}\{C=1|A=0\} = 0.2$$

• A:
$$\frac{0.9 \cdot 0.4 \cdot 0.5 \cdot 0.4 + 0.8 \cdot 0.6 \cdot 0.2 \cdot 0.6}{0.4 \cdot 0.5 + 0.6 \cdot 0.2}$$

• B:
$$\frac{0.9 \cdot 0.4 \cdot 0.5 + 0.8 \cdot 0.6 \cdot 0.2}{0.4 \cdot 0.5 + 0.6 \cdot 0.2}$$

• C:
$$\frac{0.9 \cdot 0.5 + 0.8 \cdot 0.2}{0.5 + 0.2}$$

• D: $0.9 \cdot 0.4 + 0.8 \cdot 0.6$, E: none of the above

Bayesian Network

Algorithm

3, ver

- Input: instances: $\{x_i\}_{i=1}^n$ and a directed acyclic graph such that feature X_i has parents $P(X_i)$.
- Output: conditional probability tables (CPTs): $\hat{\mathbb{P}}\{x_j|p(X_j)\}$ for j=1,2,...,m.
- Compute the transition probabilities using counts and Laplace smoothing.

$$\hat{\mathbb{P}}\{x_{j}|p(X_{j})\} = \frac{c_{x_{j},p(X_{j})} + 1}{c_{p(X_{j})} + |X_{j}|}$$

Network Structure

Discussion

- Selecting from all possible structures (DAGs) is too difficult.
- Usually, a Bayesian network is learned with a tree structure.
- Choose the tree that maximizes the likelihood of the training data.

only are parent

Chow Liu Algorithm

Discussion

• Add an edge between features X_j and $X_{j'}$ with edge weight $\mathcal{V}_{i} \stackrel{\mathcal{R}(X_j)}{\longrightarrow}$ equal to the information gain of X_j given $X_{j'}$ for all pairs j, j'. $|X_j = \hat{X}_j|$

 Find the maximum spanning tree given these edges. The spanning tree is used as the structure of the Bayesian network.

Aside: Prim's Algorithm

Discussion

- To find the maximum spanning tree, start with an arbitrary vertex, a vertex set containing only this vertex, V, and an empty edge set, E.
- Choose an edge with the maximum weight from a vertex $v \in V$ to a vertex $v' \notin V$ and add v' to V, add an edge from v to v' to E
- Repeat this process until all vertices are in V. The tree (V, E) is the maximum spanning tree.

Aside: Prim's Algorithm Diagram

Discussion

Classification Problem

Discussion

- Bayesian networks do not have a clear separation of the label Y and the features $X_1, X_2, ..., X_m$.
- The Bayesian network with a tree structure and Y as the root and $X_1, X_2, ..., X_m$ as the leaves is called the Naive Bayes classifier.
- Bayes rules is used to compute $\mathbb{P}\{Y = y | X = x\}$, and the prediction \hat{y} is y that maximizes the conditional probability.

$$\hat{y}_i = \arg\max_{y} \mathbb{P}\left\{Y = y | X = x_i\right\}$$

Nalve Bayes

Naive Bayes Diagram

Discussion

Multinomial Naive Bayes

Discussion

• The implicit assumption for using the counts as the maximum likelihood estimate is that the distribution of $X_j|Y=y$, or in general, $X_j|P(X_j)=p(X_j)$ has the multinomial distribution.

$$\mathbb{P}\left\{X_{j} = x \middle| Y = y\right\} = \frac{p_{X}}{c_{X}, y}$$

$$\hat{p}_{X} = \frac{c_{X}, y}{c_{y}}$$

Gaussian Naive Bayes

Discussion

- If the features are not categorical, continuous distributions can be estimated using MLE as the conditional distribution.
- Gaussian Naive Bayes is used if $X_j | Y = y$ is assumed to have the normal distribution.

Gaussian Naive Bayes Training

Discussion

- Training involves estimating $\mu_{\mathbf{v}}^{(j)}$ and $\sigma_{\mathbf{v}}^{(j)}$ since they completely determines the distribution of $X_i | Y = y$.
- ullet The maximum likelihood estimates of $\mu_y^{(j)}$ and $\left(\sigma_y^{(j)}\right)^2$ are the sample mean and variance of the feature j.

$$\hat{\mu}_{y}^{(j)} = \frac{1}{n_{y}} \sum_{i=1}^{n} x_{ij} \mathbb{1}_{\{y_{i}=y\}}, n_{y} = \sum_{i=1}^{n} \mathbb{1}_{\{y_{i}=y\}}$$

$$(\hat{\sigma}_{y}^{(j)})^{2} = \frac{1}{n_{y}} \sum_{i=1}^{n} \left(x_{ij} - \hat{\mu}_{y}^{(j)}\right)^{2} \mathbb{1}_{\{y_{i}=y\}}$$
sometimes
$$(\hat{\sigma}_{y}^{(j)})^{2} \approx \frac{1}{n_{y} - 1} \sum_{i=1}^{n} \left(x_{ij} - \hat{\mu}_{y}^{(j)}\right)^{2} \mathbb{1}_{\{y_{i}=y\}}$$

Gaussian Naive Bayes Diagram

Tree Augmented Network Algorithm

Discussion

- It is also possible to create a Bayesian network with all features X₁, X₂, ..., X_m connected to Y (Naive Bayes edges) and the features themselves form a network, usually a tree (MST edges).
- Information gain is replaced by conditional information gain (conditional on Y) when finding the maximum spanning tree.
- This algorithm is called TAN: Tree Augmented Network.

Tree Augmented Network Algorithm Diagram

Discussion

