Probability Distributions Bayesian Network Naive Bayes

Q000 0000000000000 0000000000000 Q0000000

CS540 Introduction to Artificial Intelligence
Lecture 10

Young Wu
Based on lecture slides by Jerry Zhu and Yingyu Liang

June 20, 2019



Probability Distributions Bayesian Network Naive Bayes
0000 0000000000000 00000000O00O000 00000000

Joint Distribution

Motivation

@ The joint distribution of X; and X; provides the probability of
X; = xj and Xy = xj» occur at the same time. —;,MM,(}
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e The marginal distribution of X; can be found by summing
over all possible values of Xj:. 7 R Az
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Conditional Distribution

Motivation

@ Suppose the joint distribution is given.

P{X; = x. %) = 7}

e The conditional distribution of X; given X;; = x;/ Is ratio
between the joint distribution and the marginal distribution.

PO = 5.% =}

P X = x}

PAX) = x1X) =} =
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Notation

Motivation

e The notations for joint, marginal, and conditional distributions
will be shortened as the following.

P {x;, %1}, P {x},P{xlx}

@ When the context is not clear, for example when
X; = a,xj = b with specific constants a, b, subscripts will be
used under the probability sign.

Px;x, {a, b}, Px; {a} , Px; x, {a|b}
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® Two documents A and B. Suppose IP’{H|A = 0 1in A and
P{H|B} = 0.8 in B without Laplace smoothing. One
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Bayesian Network Diagram

Definition

e Story: You are travelling far from home. There may be a Fire
problem or a Cat problem at home. Either problem might
trigger an Alarm. Then your neighbors Nick or Happy or both

might call you because of the IarT or &; other reasons.
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Bayesian Network

Definition

e A Bayesian network is a directe

set of‘mtional probability dist

o EaCh‘WtEK representsa feature Xj

(DAG) and a

S S——

e Each edge from X; to Xy represents that X; directly influences
X;. —

® No edge between X; and X implies independence or
¢onditional independence between the two features.

-
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Conditional Independence

Definition

@ Recall two events A, B are independent if:

P{A,B} = P{A} P{B} or P{A|B} = P {A}

7% —— -

e In general, two events A, B are conditionally independent,
conditional on event C if:

P (A, B)Q} = P{A|C} P{BIC} or P{A]B.C} = P{A[C}
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Causal Chain

Definition

e For three events A, B, C, the configuration A — B — C is
called causal chain.

@ In this configuration, A is not independent of C, but A is
itionally i e inf ' B.
conditionally independent of C given information about

@ Once B is observed, A and C are independent.
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Common Cause

Definition

o

™
H I,

e For three ev A. B, C, the configuration A« B — C is
cal@ﬂ@zu:s@

@ In this configuration, A is not indegsgg?n_gf C, but Ais
conditionally_independent of C given information about B.

o Once B is observed, A and C are independent.
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Common Effect

. Definition

C = C o ©
AN N, 7
A= A
Cjcit M(ﬁ(/l(/

@ For three events A, B, C, the configuration A —» B «— C is

called common effect.
\——f
@ In this configuration,@ndependent of C))ut A is_not Cofvect
capnditionally independent of C given information about B.

@ Once B is observed, A and C are not independent. \&, PfA\B}
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Storing Distribution

Definition

1 A%, C Y QP/fA) CS P AR
ot

e |f there are m binary variables with k edges, there are 2" joint

probabilities to store.

e There are significantly less conditional probabilities to store.
For example, if each node has at most 2 parents, then there
are less than 4m conditional probabilities to store.

e Given the conditional probabilities, the joint probabilities can
be recovered.

O C, AnNy = PSEY PTG AR N[ F
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Conditional Probability Table Diagram

Definition

> O,

@ PeSAn | PJ,Cctﬂ
1
¢ 3 — o3

@ .
At} PSNIM0y SS @
OGr=tlA=ty B TN=1 AT

C—Wf&.(.m \DCTk el Cs \A =\, H’\/\l 1)

= PFX)PM

B ]v U()j




Probability Distributions Bayesian Network Naive Bayes
0000 0000000080000 000000O0000000 )O00000

Training Bayes Net

Definition

e Training a Bayesian network given the DAG is estimating the
conditional probabilities. Let P (Xj) denote the parents of the

vertex X;, and p (X;) be realizations (possible values) of
P (X;)-

P {xlp (X))}.p(X;) € P (X))

@ |t can be done by maximum likelihood estimation given a
training set.
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Bayes Net Training Example, Training, Part |

Definition

e Given a network and the training data.
F->AC-o>AA->HA->N.

FIC|A|H|N
0/0(0]1|0
0(1]0]0]Q0
0/0]0] 1|1
110]0]0]|1
0701 ]1]0Q0
070101
00 ]1]1]1
001 |1]1
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Bayes Net Training Example, Training, Part |l

Definition
A = I -
e Compute ]P’{F= 1} = T n -
FIC|A|H|N
000|110
01 1]1]0,01]0
000 | 1]|1
DO |0|0|1
0401|110
00101
o{0f1]|1]1
\jp 0|1]1]1
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Bayes Net Training Example, Training, Part |l

Definition
C
e Compute H%{H:/HA,E_O} /HEZDA: - 2%’
FIC|AIH/|N \
0 0q/0] D 0 <z
0/1[0f0]0O
000 D|1
110N0V| 0|1
0j0(1;1|0
0101 ]0(1
0101 1)1
001 1|1
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Bayes Net Training Example, Training, Part V

Definition

2 Compute II\D{A = 1|F — O, C = ]_} C‘A‘vl , o, Co
F| C
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Bayes Net Training Example, Training, Part VI
Quiz (Graded)

o What is the condition bability P{A = 1|F =0.C =0}7

s 1 1 2
A:0,B:=-,C:.=,D: =, E 1
@ 3 2 3

—F [ CIA[H]N
7003 1] 0 T E
ol1]o0f0]0O 6 ,
(00011
T[0|0|0|1
G0 1|0
(0|0 |1/[0]1
0[0|11]1
00 A |11
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Laplace Smoothing

Definition

@ Recall that the MLE estimation can incorporate Laplace

smoothing.
o O

P(

bIAIE. 4 s f&“””
o Here, |X;| is the number of pgsg'bLalalUf-S- number of

categories) of X

{XJ|P(

e Laplace smoothing is considered regularization for Bayesian

networks because it avoids overfitting the training data.

Naive Bayes
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Bayes Net Inference Example, Part |

Definition

@ Assume the network is trained on a larger set with the
following CPT. Compute P{F =1|H =1, N = 1}7

P{F =1} =0.001,P{C =1} = 0.001
P{A=1F=1,C=1}=0095P{A=1|F =1,C =0} =0.94
P{A=1/F=0,C =1} =029,P{A=1|F =0,C = 0} = 0.00

P{H=1A=1}=0.9,P{H =1|A =0} = 0.05
P{N=1A=1}=0.7,P{N = 1|]A =0} = 0.01



Probability Distributions Bayesian Network Naive Bayes
0000 0000000000000 000e000000000 )O00000

Bayes Net Inference Example, Part ||

Definition

Q’S (S (A/\)S P fF,H//\)\
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P7F, m 3 @ FoH oA ART S
e Comput ~I’[\”{F=1|H=1,Nﬂ
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Bayes Net Inference Example, Part ll|

Definition
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Bayes Net Inference Example, Part IV

Definition

e Which of the following probabilies (multiple) are not required
to compute P{C =1H=1,N =1}7

o A:P{A=1|F =1,C =1} = 0.95
o B:P{A=1|F =1,C =0} =0.94
o C:P{A=1|F=0,C=1}=0.29
o D:P{A=1|F =0,C =0} = 0.00

@ E: none of the above.
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Common Cause Example, Part |
Quiz (Graded)

0 2025 Fall Final Q20, 2006 Fall Final Q20

@ Suppose A is the common cause of B and C. All variables are
binary. What is P{C = 1|B = 1}7

P{A=1}=04,P{B=1A=1}=09,P{B=1A=0}=0.38
P{C=1A=1}=05P{C=1A=0}=0.2
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Common Cause Example, Part |l
Quiz (Graded)

e What is P{B =1|C = 1}7

P{A=1}=04P{B=1A=1}=09,P{B=1]A=0}=0.8
P{C=1A=1}=05P{C=1A=0}=0.2

- 0.8-04-0:5 ~Uid-+10:8 - 0:0 -~0:2 - 0.0

04-05+0.6-0.2
5. 0.9-04-05+0.8-0.6-0.2

0.4-0.5+0.6-0.2
10.9-05+0.8-0.2

o C:
0.5+0.2
@ D:09-0.4+0.8-0.6, E: none of the above
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Bayesian Network
Algorithm

e Input: instances: {x;}_; and a directed acyclic graph such
that feature X; has parents P (X;).

e OQutput: conditional probability tables (CPTs): [’[‘D{Xj|p()9,)}
forj=1,2,...,m.

e Compute the transition probabilities using counts and Laplace
smoothing.

c (Xj)_l_l

XjP

CP(XJ') + |XJ'|

P {xp (X))} =
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Network Structure ‘

—\-j Discussion F_\ t,/
‘7 @~ %

VAN st A
N .

e Selecting from all possible structures (DAGs) is too difficult.

e Usually, a Bayesian network is learned with a tree structure.

@ Choose the tree that maximizes the likelihood OE the training

data.
N Parat
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Chow Liu Algorithm

Discussion gL
A s
16) 3¢
Q T~
de s 4 rep D

e Add an edge betwin features X; and Xj» with edge weight
equal to the information gain of X; given Xj, for all pairs j. J'.

@ Find the maximum spanning tree given these edges. The
spanning tree is used as the structure of the Bayesian network.
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Aside: Prim’s Algorithm

Discussion

e To find the maximum spannirg—tree, start with an arbitrary
vertex, a vertex set containing only this vertex, V, and an
empty edge set, E.

@ Choose an edge with the maximum weight from a vertex

ve V toavertex v ¢ V and add v/ to V, add an edge from
vito Vv to E

@ Repeat this process until all vertices are in V. The tree
(V, E) is the maximum spanning tree.

-
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Aside: Prim’s Algorithm Diagram

Discussion
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Classification Problem

Discussion

e Bayesian networks do not have a clear separation of the label
Y and the features X1, X5, ..., Xm.

e The Bayesian network with a tree structure and Y as the root
and Xi, Xp, ..., X, as the leaves is called the Naive Bayes
classifier.

e Bayes rules is used to compute P{Y = y|X = x}, and the
prediction y is y that maximizes the conditional probability.

& p-wmh Y XD Y

‘ A INN
) SARSEENALL “
W‘(«l)xﬁé@rﬂ'{o)x b Yo K, s
: Ptfx\\\(t"ﬁ, PeiX)l ¥}




Naive Bayes Diagram

Discussion

It

it
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Multinomial Naive Bayes

Discussion

@ The implicit assumption for using the counts as the maximum
likelihood estimate is that the distribution of X;|Y =y, or in
general, X;|P (X;) = p(X;) has the multinomial distribution.

[ED{)(_;'=X|Y=y}=pX

~ CX,y
Px =
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Gaussian Naive Bayes

Discussion

e If the features are not categorical, continuous distributions
can be estimated using MLE as the conditional distribution.

o Gaussian Naive Bayes is used if X;|Y = y is assumed to have

the normal distribution.
g 3
(=)

1
im —P{x < X; < x+¢e|lY =y} = exp | —

e—0 € \/%09) ) (g}g)) 2
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Gaussian Naive Bayes Training

Discussion

@ Training involves estimating ”O) and JU) since they
completely determines the distribution of XilY =y.

i\ 2
@ The maximum likelihood estimates of ,um and (JJ(;’)) are the

sample mean and variance of the feature j.

ﬁg)=—ZXU {yi=y}r lly = Zﬂy,

m—
<o
Nt
(]

| |

Z(XU A(J)) Liyi=y}

=1

1 & R
Z(Xu Nj(fj)) Liyi=y)

le

=1
n

2?

A\ 2
sometimes (“J(f))
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Gaussian Naive Bayes Diagram

Discussion
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Tree Augmented Network Algorithm

Discussion

e It is also possible to create a Bayesian network with all
features Xi, Xz, ..., Xin connected to Y (Naive Bayes edges)
and the features themselves form a network, usually a tree
(MST edges).

@ Information gain is replaced by conditional information gain
(conditional on Y') when finding the maximum spanning tree.

e This algorithm is called TAN: Tree Augmented Network.
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ﬁree Augmented Network AlgoritP@Diagram
TP‘ N Discussion P; Y Y ‘ x . X\TS






