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Bayes Rule Example 1
Quiz

e Two documents A and B, Suppose A contains 1 " Groot” and
9,other words, and B contains 8 " Groot” and 2 other words.
One document is taken out atrandom (with equal
probability), and one word is picked out at random (all words

with equal probabilitﬁhe word is " Groot”. What is the

probability that the document is A'&?\ INa¥, (ngwm
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Bayes Rule Example 1 Distribution

Quiz
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Bayes Rule Example 2
Quiz

Q¥
D)

@ Two documents A and B. Suppose A contains 1 Groot and 9
other words, and B contains 8’ 'Groot” and 2 other words.

= 1
One document is taken outiA with probably 3 nd B with
b 5 . 3
probably §§ and one word is picked out at random with equal
probabilities. The word is " Groot”. What is the probability

that the document is A?
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Bayesian Network

Definition

e A Bayesian network is a directed acyclic graph (DAG) and a
set of conditional probability distributions.

e Each vertex represents a feature X;

e Each edge from X; to Xj represeFfs that X; directly influences
X;. — - .

e No edge between X; and X implies independence or
conditional independence between the two features.
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Training Bayes Net

Definition

e Training a Bayesian network given the DAG is estimating the
conditional probabilities. Let P (X;) denote the parents of the

vertex Xj, and p(X;) be realizations (possible values) of
P (Xj).

P{xjlp (Xj)},p (X)) € P(Xj)

@ |t can be done by maximum likelihood estimation given a
training set.
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Bayesian Network Diagram

Quiz

Naive Bayes

e Story: You are travelling far from home. There may be a Fire
problem or a Cat problem at home. Either problem might
trigger an Alarm. Then your neighbors Nick (Fury) or Happy
or both might call you because of the alarm or for other

reasons.
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Bayes Net Training Example, Training 1
Quiz
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Bayes Net Training Example, Training 2

Quiz
C/\IZI,ALI __}\}/
e Compute I’I\”{N=1|A=1}. CAt\ F
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Bayes Net Training Example, Training 3
Quiz

e Compute If”{A~= 1|F =0,C =1}
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Bayes Net Training Example, Training 4
Quiz .
AI - 0 C

e What is the conditional probability ]f"{A\= 1|/F =1,C =0}7?
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Bayes Net Training Example, Training 5
Quiz

o What is the conditional probability P {A = 0|F = 0, C = 1}?

1 1 2
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Laplace Smoothing

Definition

@ Recall that the MLE estimation can incorporate Laplace
smoothing.

5 (oo (X)) = 5P(%)
P{\Xglp()%)}—@@ |
o g

Cx*:-z.P("') + C)TJM Pk )
e Here, |Xj| is the number of possible values (number o

categories) of X;.

e Laplace smoothing is considered regularization for Bayesian
networks because it avoids overfitting the training data.
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Bayes Net Inference 1

Definition

e Given the conditional probabilitiy table, the joint probabilities
can be calculated using conditional independence.
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Bayes Net Inference 2

Definition

@ Given the joint probabilities, all other marginal and conditional
probabilities can be calculated using their definitions.

} I[D{Xj, XH }
RAR 2
Z I[D{lex2:-'“axm}

X k#jj' j",..

P{)(jr,XjH,,...} = Z I[D{Xl,XQ,...,Xm}
Xi:k#j' j",...

I[D {Xj|Xj’an”j .

P {xj, X1, Xjn, ...}
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Bayes Net Inference Example 1
Quiz

@ Assume the network is trained on a larger set with the
following CPT. Compute P{F =1, C =1|H=0,N = O}?}
— —— ———

\ .|
P{F =1} =0.001,P{C =1} = 0.001

If”iﬂ::l,C=L}=0.95,I'P’{A=1|F=1,C=O}=0.94

e

— "

N=1A=1}=07P{N=1]A =0} =0.01
—

o

|
P{H=1A=1}=0.9,P{H =1|A =0} = 0.05
{
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Bayes Net Inference Example 1 Computation 1
Quiz
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Bayes Net Inference Example 1 Computation 2
Quiz
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Bayes Net Inference Example 1 Computation 3
Quiz
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Bayes Net Inference Example 2
Quiz
Q \ \ C\\ ;:—
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o Compute P{C =1|F =1}?= (J(eg‘s\}

p{F} = 0.001,@ H

P{A|F,C} =095 P{AlF,—~C} = 0.94
P{A|~F,C} = 0.29,P{A—F,—-C} = 0.00

?(\Cﬁ
e A: 0/ B: 0.001), C: 0.0094, D: 0.0095, E: 1
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Bayes Net Inference Example 2 Computation
Quiz

o Compute P{C = 1|F = 1}?

P{F} =0.001,{C} = 0.001
IP’{A|F C} =095 P{A/F,—C} =0.94
B (A|~F. C} = 0.29. P{A-F,~C} = 0.00

P § C= / A=10 < bic=l fiRc|

T KJ ?r(C#A\@*VTC-lAI@
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Bayes Net Inference Example 3

Quiz
o Compute P{C =1,F =1|A=1}? @ ll
P{F} = 0.001,{C} = 0.001 “"’ﬁ)

P{A|F,C} = 0.95,P{A|F,—~C} = 0.94
P{A|-F,C} = 0.29.P{A|-F,—~C} = 0.00

?rj e, F:(/A:l)
oo LT
e A:0.001-0.001, B: 0.001-0.001 - 0.95, o, (A7 1)
. 0.001 L
0.001-0.95 + 0.999 - (0.94 + 0.29)
. 0.001 - 0.001 o §c=1, Pl A
1 0.001-0.95+0.999- (0.94 +0.29) S S
@ 0.001 - 0.95 4 2) o |
/001-0.95 +0.999 - (0.94 +0.29) +
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Bayes Net Inference Example 3 Computation
Quiz

o Compute P{C =1F=1/A=1}?

P(F) =000, B(cj =00 &

P{A|F.C} =0.95,P{A|F,~C} = 0.94
P {A|=F,C} = 0.29,P{A|-F.~C} = 0.00
=, ¢ 0.00
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Chow Liu Algorithm

Discussion e A g4 (%, 4,)
el

e Add an edge between features X; and X with edge weight
equal to the information gain of X; given X/ for all pairs j, j'.

e Find the maximum spanning tree given these edges. The
spanning 7&5 used as the structure of the Bayesian network.

S o
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Classification Problem

Discussion

3

e Bayesian networks do not have a clear separation of the label
Y and the features Xi. Xs, ..., Xm. B scﬁ"‘ .
ol

: : IR AL
e The Bayesian network with a tree structure ande); as the root
and Xi. Xs, ..., X, as the leaves is called the Naive Bayes

classifief. *© ]

e Bayes rules is used to compute P{Y = y|X = x}, and the
prediction y is y that maximizes the conditional probability. /
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Naive Bayes Diagram

( ML) Discussion
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Tree Augmented Network Algorithm

N Discussion k/
é/\ Dac X|/7 TN

f
— C I X‘) X(
IS
e |t is also possible to create a Bayesian network with all CP3

features Xi. X2, ..., Xy connected to Y (Naive Bayes edges)
and the features themselves form a network, usually a tree
\__ (MST edges).

° Informatlon gain is replaced by conditional information gain
(condltlonal on Y') when finding the maximum spanning tree.

@ This algorithm is called TAN: Tree Augmented Network.
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Tree Augmented Network Algorithm Diagram

Discussion





