## CS540 Introduction to Artificial Intelligence Lecture 11

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

June 28, 2020

## Supervised Learning

Motivation



Given training data and label.

- Discriminative: estimate  $\hat{\mathbb{P}}\{Y=y|X=x\}$  to classify.
- Generative: estimate  $\hat{\mathbb{P}}\{X = x | Y = y\}$  and Bayes rule to classify.

## Naive Bayes

Motivation

• Naive Bayes:  $X_j \leftarrow Y$ .

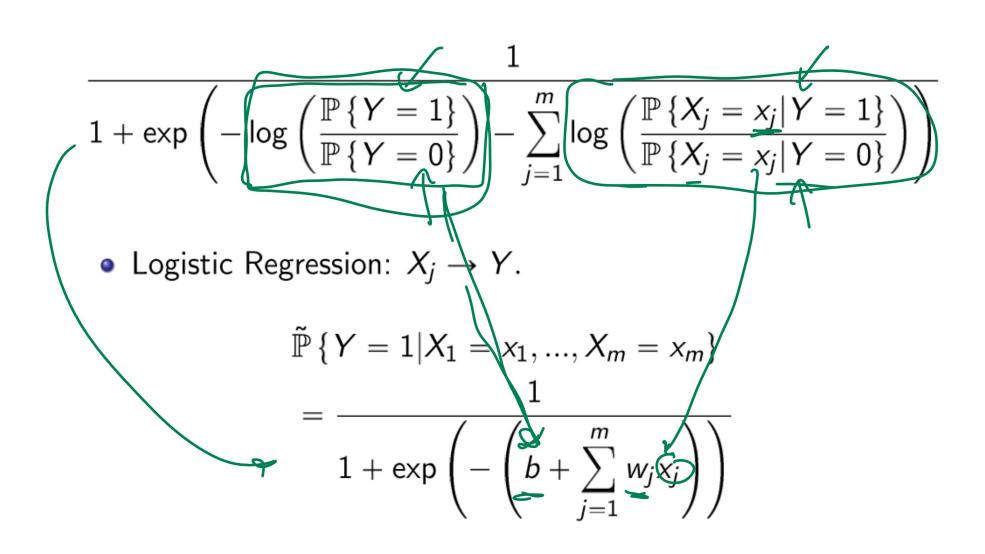
$$\mathbb{P}\left\{Y = 1 | X_{1} = x_{1}, ..., X_{m} = x_{m}\right\}$$

$$= \frac{\mathbb{P}\left\{Y = 1\right\} \prod_{j=1}^{m} \mathbb{P}\left\{X_{j} = x_{j} | Y = 1\right\}}{\mathbb{P}\left\{X_{1} = x_{1}, ..., X_{m} = x_{m}\right\}}$$

$$= \frac{1}{1 + \exp\left(-\log\left(\frac{\mathbb{P}\left\{Y = 1\right\}}{\mathbb{P}\left\{Y = 0\right\}}\right) - \sum_{j=1}^{m}\log\left(\frac{\mathbb{P}\left\{X_{j} = x_{j} | Y = 1\right\}}{\mathbb{P}\left\{X_{j} = x_{j} | Y = 0\right\}}\right)\right)}$$

## Logistic Regression

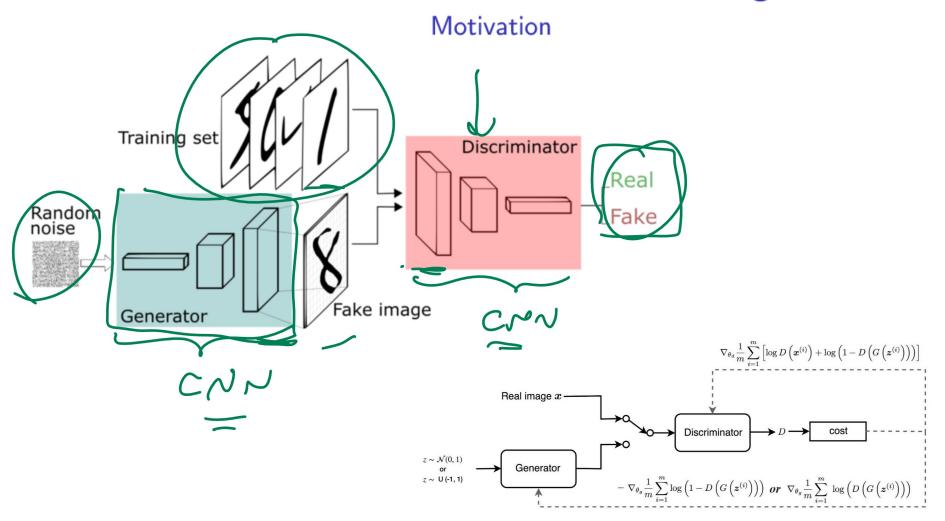
Motivation



# Generative Adversarial Network Motivation

- Generative Adversarial Network (GAN): two competitive neural networks.
- Generative network input random noise and output fake images.
- ② Discriminative network input real and fake images and output label real or fake.

## Generative Adversarial Network Diagram



## **Unsupervised Learning**

#### Motivation

- Supervised learning:  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ .
- Unsupervised learning:  $x_1, x_2, ..., x_n$ .
- There are a few common tasks without labels.
- Olustering: separate instances into groups.
- Ovelty (outlier) detection: find instances that are different.
- Oimensionality reduction: represent each instance with a lower dimensional feature vector while maintaining key characteristics.

# Unsupervised Learning Applications Motivation

- Google News
- Google Photo
- Image Segmentation
- Text Processing

## Hierarchical Clustering

Description

- Start with each instance as a cluster.
- Merge clusters that are closest to each other.
- Result in a binary tree with close clusters as children.

# Hierarchical Clustering Diagram

Description

## Clusters

### Definition

A cluster is a set of instances.

$$C_k \subseteq \{x_i\}_{i=1}^n$$

A clustering is a partition of the set of instances into clusters.

$$C = C_1, C_2, ..., C_K$$

$$C_k \cap C_{k'} = \emptyset \text{ for } k' \neq k, \bigcup_{k=1}^K C_k = \{x_i\}_{i=1}^n$$

## Distance between Points

### Definition

• Usually, the distance between two instances is measured by the Euclidean distance or  $L_2$  distance.

$$d(x_{i}, x_{i'}) = \|x_{i} - x_{i'}\|_{2} = \sqrt{\sum_{j=1}^{m} (x_{ij} - x_{i'j})^{2}}$$

• Other examples include:  $L_1$  distance and  $L_{\infty}$  distance.

$$d_{1}(x_{i}, x_{i'}) = \|x_{i} - x_{i'}\|_{1} = \sum_{j=1}^{m} |x_{ij} - x_{i'j}|$$

$$d_{\infty}(x_{i}, x_{i'}) = \|x_{i} - x_{i'}\|_{\infty} = \max_{j=1, 2, ..., m} \{|x_{ij} - x_{i'j}|\}$$

# Single Linkage Distance

 Usually, the distance between two clusters is measured by the single-linkage distance.

$$d(C_k, C_{k'}) = \min \{ d(x_i, x_{i'}) : x_i \in C_k, x_{i'} \in C_{k'} \}$$

 It is the shortest distance from any instance in one cluster to any instance in the other cluster.

# Complete Linkage Distance

Another measure is complete-linkage distance,

$$d(C_k, C_{k'}) = \max\{d(x_i, x_{i'}) : x_i \in C_k, x_{i'} \in C_{k'}\}$$

 It is the longest distance from any instance in one cluster to any instance in the other cluster.

# Average Linkage Distance Diagram Definition

Another measure is average-linkage distance.

$$d(C_k, C_{k'}) = \frac{1}{|C_k| |C_{k'}|} \sum_{x_i \in C_k, x_{i'} \in C_{k'}} d(x_i, x_{i'})$$

 It is the average distance from any instance in one cluster to any instance in the other cluster.

# Linkage Diagram

Definition

## Hierarchical Clustering

### Algorithm

- Input: instances:  $\{x_i\}_{i=1}^n$ , the number of clusters K, and a distance function d.
- Output: a list of clusters  $C = C_1, C_2, ..., C_K$
- Initialize for t=0.

$$C^{(0)} = C_1^{(0)}, ..., C_n^{(0)}, \text{ where } C_k^{(0)} = \{x_k\}, k = 1, 2, ..., n\}$$

• Loop for t = 1, 2, ..., n - k + 1.

$$(k_1^{\star}, k_2^{\star}) = \arg\min_{k_1, k_2} d\left(C_{k_1}^{(t-1)}, C_{k_2}^{(t-1)}\right)$$
 
$$C^{(t)} = \left(C_{k_1^{\star}}^{(t-1)} \cup C_{k_2^{\star}}^{(t-1)}\right), C_1^{(t-1)}, \dots \text{ no } k_1^{\star}, k_2^{\star} \dots, C_n^{(t-1)}$$

### Number of Clusters

#### Discussion

- $\bullet$  K can be chosen using prior knowledge about X.
- The algorithm can stop merging as soon as all the between-cluster distances are larger than some fixed R.
- The binary tree generated in the process is often called dendrogram, or taxonomy, or a hierarchy of data points.
- An example of a dendrogram is the tree of life in biology.

## K Means Clustering

Description

- This is not K Nearest Neighbor.
- Start with random cluster centers.
- Assign each point to its closest center.
- Update all cluster centers as the center of its points.

# K Means Clustering Diagram

Description

# Center Definition

• The center is the average of the instances in the cluster,

$$c_k = \frac{1}{|C_k|} \sum_{x \in C_k} x$$

## Distortion

#### Distortion

- Distortion for a point is the distance from the point to its cluster center.
- Total distortion is the sum of distortion for all points.

$$D_{K} = \sum_{i=1}^{n} d(x_{i}, c_{k^{*}(x_{i})}(x_{i}))$$

$$k^{*}(x) = \arg \min_{k=1,2,...K} d(x, c_{k})$$

$$k^{\star}(x) = \arg\min_{k=1,2,...K} d(x, c_k)$$

# Objective Function

Definition

- This algorithm stop in finite steps.
- This algorithm is trying to minimize the total distortion but fails.

# Objective Function Counterexample Definition

## **Gradient Descent**

### Definition

 When d is the Euclidean distance. K Means algorithm is the gradient descent when distortion is the objective (cost) function.

$$\frac{\partial}{\partial c_k} \sum_{k=1}^K \sum_{x \in C_k} \|x - c_k\|_2 = 0$$

$$\Rightarrow -2 \sum_{x \in C_k} (x - c_k) = 0$$

$$\Rightarrow c_k = \frac{1}{|C_k|} \sum_{x \in C_k} x$$

## K Means Clustering

### Algorithm

- Input: instances:  $\{x_i\}_{i=1}^n$ , the number of clusters K, and a distance function d.
- Output: a list of clusters  $C = C_1, C_2, ..., C_K$
- Initialize t = 0.

$$c_k^{(0)} = K$$
 random points

• Loop until  $c^{(t)} = c^{(t-1)}$ .

$$C_k^{(t-1)} = \left\{ x : k = \arg \min_{k' \in 1, 2, \dots, K} d\left(x, c_k^{(t-1)}\right) \right\}$$

$$c_k^{(t)} = \frac{1}{\left|C_k^{(t-1)}\right|} \sum_{x \in C_k^{(t-1)}} x$$

## Number of Clusters

#### Discussion

- There are a few ways to pick the number of clusters K.
- $oldsymbol{0}$  K can be chosen using prior knowledge about X.
- ② K can be the one that minimizes distortion? No, when K = n, distortion = 0.
- $\odot$  K can be the one that minimizes distortion + regularizer.

$$K^* = \arg\min_{k} (D_k + \lambda \cdot m \cdot k \cdot \log n)$$

•  $\lambda$  is a fixed constant chosen arbitrarily.

## Initial Clusters

### Discussion

- There are a few ways to initialize the clusters.
- **1** K uniform random points in  $\{x_i\}_{i=1}^n$ .
- 2 1 uniform random point in  $\{x_i\}_{i=1}^n$  as  $c_1^{(0)}$ , then find the farthest point in  $\{x_i\}_{i=1}^n$  from  $c_1^{(0)}$  as  $c_2^{(0)}$ , and find the farthest point in  $\{x_i\}_{i=1}^n$  from the closer of  $c_1^{(0)}$  and  $c_2^{(0)}$  as  $c_3^{(0)}$ , and repeat this K times.

## Gaussian Mixture Model

#### Discussion

- In K means, each instance belong to one cluster with certainty.
- One continuous version is called the Gaussian mixture model: each instance belongs to one of the clusters with a positive probability.
- The model can be trained using Expectation Maximization Algorithm (EM Algorithm).

# EM Algorithm, Part I

Discussion

• The means  $\mu_k$  and variances  $\sigma_k^2$  for each cluster need to be trained. The mixing probability  $\pi_k$  also needs to be trained.

$$(\mu_1, \sigma_1^2, \pi_1), (\mu_2, \sigma_2^2, \pi_2), ..., (\mu_K, \sigma_K^2, \pi_K)$$

Initialize by random guesses of clusters means and variances.

## EM Algorithm, Part II

### Discussion

• Expectation Step. Compute responsibilities for i = 1, 2, ..., n and k = 1, 2, ..., K.

$$\hat{\gamma}_{i,k} = \frac{\hat{\pi}_{k} \varphi_{k} (x_{i})}{\sum_{k'=1,2,\dots,K} \hat{\pi}_{k'} \varphi_{k'} (x_{i})}$$

$$\varphi_k(x) = \frac{1}{\sqrt{2\pi}\hat{\sigma}_k} \exp\left(-\frac{(x-\hat{\mu}_k)^2}{2\hat{\sigma}_k^2}\right)$$

## EM Algorithm, Part III

#### Discussion

• Maximization Step. Compute means and variances for each k = 1, 2, ..., K.

$$\hat{\mu}_k = \frac{\sum\limits_{i=1}^n \hat{\gamma}_{i,k} x_i}{\sum\limits_{i=1}^n \hat{\gamma}_i}, \text{ and } \hat{\sigma}_k^2 = \frac{\sum\limits_{i=1}^n \hat{\gamma}_{i,k} \left(x_i - \hat{\mu}_k\right)^2}{\sum\limits_{i=1}^n \hat{\gamma}_i}$$

$$\hat{\pi}_k = \frac{1}{n} \sum\limits_{i=1}^n \hat{\gamma}_{i,k}$$

Repeat until convergent.

## Gaussian Mixture Model Diagram

Discussion