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Midterm Discussion
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e Bug fix in_auto-grading, grades uipdated. \/

oiMVldual grades. ) A - E/A
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@ Version A Part 1 average: 4.5, Part 2 average: 3.1
@ Version B Part 1 average: 3.3, Part 2 average: 3.2

N f th tions has PROB < 0.25, RPBI < 0.
____.® None of the questions has PRO SFBl =0

@ No curve for all versions.
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Low Dimension Representation

Motivation

@ Unsupervised learning techniques are used to find low
dimensional representation.

@ Visualization. -~/
© Efficient storage. J

© Better generalization. - y‘ojv )prm»;,m

© Noise removal.
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Dimension Reduction Diagram

Motivation
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Projection

Definition

@ The projection of x; onto a unit vector uy is the vector in the
direction of ui that is the closest to x;.

< o U
(“kai> T

e The length of the projection of x; onto a unit vector uy is

UZ-X,'.
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Maximum Variance Directions
Definition L?/\j‘l"/’
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@ The goal is to find the|direction that maximizes the projected
variance.
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Projection Example 1
F Quiz
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Projection Example 2

Quiz
NS )
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e What is the projection of [(1)] onto
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Projection Example 3
Quiz

op> L

1 1
e What is the projection of |2 | onto [1] ?
3 1

o A:[1 1 1" -
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Projection Example 4
Quiz
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e What is the projection o(

o A1 1 1]
o B2 2 2]
o C:[3 3 3]
- 1T
oD:[4 4 4
o E:[6 6 6
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Spectral Decomposition Example 1
Quiz

@ Given the following spectral decomposition of 5, what is the
first principal component?
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Spectral Decomposition Example 2
Quiz @ 4_
oA (_)
e Given the following spectral decomposition of 5, what is the
first principal component?
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e A: |0 0| ,D: (0 ,E |1
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Spectral Decomposition Example 3

Qg C [&ﬂ) Quiz

2 0 0
@Y =1|0 3 0], whatis the second principal component?
0 0 1
Ty [0 0 0] 1
e A: O ,B: 1| ,C 0] ,D: |0 E |1
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Principal Component Analysis
Algorithm

e Input: instances: {x;}'_;, the number of dimensions after
reduction K < m.

@ Qutput: K principal components.

e Find the largest K eigenvalues A\1 = \p = ... = Ak .

e Return the corresWhogonal eigenvectors

u, u2...uK/.
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Number of Dimensions

Discussion

@ There are a few ways to choose the number of principal
components K.

@ K can be selected given prior knowledge or requirement.

S —

@ K can be the number of non-zero eigenvalues.

—————

@ K can be the number of eigenvalues that are large (larger

than some threshold). ~—
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Reduced Feature Space

Discussion

e The original feature space is m dimensional.
—7
96— 3
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@ Other supervised}learning algorithms can be applied on the

new features.
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Eigenface ¢ erceles
Discussion
PCs J
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. . . - '\
e Eigenfaces are eigenvectors of face images (pixel intensities or

HOG features). ‘zj
e Every face can be written as a linear combination of
eigenfaces. The coefficients determine specific faces.

ulv\ qz_

e Eigenfaces andcan be combined to detect or recognize
faces.
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Reduced Space Example 1
Quiz
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Reduced Space Example 1 Diagram
Quiz
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Reduced Space Example 2
Quiz
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Reduced Space Example 3
Quiz
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Non-linear PCA
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. What is

the reconstructed vector using only the first two principal
components?
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Autoencoder

Discussion

@ A multi-layer neural network with the same input and output
y; = X; Is called an autoencoder.

@ The hidden layers have fewer units than the dimension of the
iInput m.

@ The hidden units form an encoding of the input with reduced
dimensionality.
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Kernel PCA

Discussion

@ A kernel can be applied before finding the principal

components.
n—1 X‘w

7.-

@ The principal components can be found without explicitly

computing ¢ (x;), similar to the kernel trick for support vector
machines.

e Kernel PCA is a non-linear dimensionality reduction method.





