CS540 Introduction to Artificial Intelligence Lecture 12

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

July 7, 2020

- Bug fix in auto-grading, grades updated.
- Did not fix individual grades.

- Version A Part 1 average: 4.5, Part 2 average: 3.1
- Version B Part 1 average: 3.3, Part 2 average: 3.2
- ightharpoonup None of the questions has PROB < 0.25, RPBI < 0.
 - No curve for all versions.

Low Dimension Representation

Motivation

- Unsupervised learning techniques are used to find low dimensional representation.
- Visualization.

- Noise removal.

3 Better generalization.

Dimension Reduction Diagram

Motivation

Projection

Definition

• The projection of x_i onto a unit vector u_k is the vector in the direction of u_k that is the closest to x_i .

$$proj_{u_k} x_i = \left(\frac{u_k^T x_i}{u_k^T u_k}\right) u_k = u_k^T x_i u_k$$

$$\rho_{ro}$$

 The length of the projection of x_i onto a unit vector u_k is u_k^Tx_i.

$$\|\operatorname{proj}_{u_k} x_i\|_2 = \underbrace{u_k^T x_i}_{} \quad \angle$$

Maximum Variance Directions

Definition

Projetted varrence

The goal is to find the direction that maximizes the projected variance.

λ = ergen value, Σ M_k = λ M_k

Quiz

X PCI PC

onto 0

What is the projection of

 $(u^{T}X)u$ $= (1,0)(\frac{1}{2})(\frac{1}{2}) = (\frac{1}{2})$ $W^{7}X = X^{7}W = W^{2}X = X^{2}W$

• What is the projection of
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 onto $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$?

• A:
$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$$

$$\frac{u^{T}x}{u^{T}u}$$
 u

$$=\frac{6}{3}\left(\begin{array}{c}1\\1\\1\end{array}\right)=\left(\begin{array}{c}2\\2\\2\end{array}\right)$$

- A: [1 1 1]^T

- D: [4 4 4]^T
 E: [6 6 6]^T

Spectral Decomposition Example 1

 Given the following spectral decomposition of Σ̂, what is the first principal component?

Spectral Decomposition Example 2

Quiz

Q4

• Given the following spectral decomposition of $\hat{\Sigma}$, what is the first principal component?

$$\hat{\Sigma} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• A:
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, B: $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, C: $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, D: $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, E: $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Spectral Decomposition Example 3

•
$$\hat{\Sigma} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 , what is the second principal component?

• A:
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, B: $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, C: $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, D: $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, E: $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Principal Component Analysis

Algorithm

- Input: instances: $\{x_i\}_{i=1}^n$, the number of dimensions after reduction K < m.
- Output: K principal components.
- Find the largest K eigenvalues $\lambda_1 \geqslant \lambda_2 \geqslant ... \geqslant \lambda_K$.
- Return the corresponding unit orthogonal eigenvectors $u_1, u_2...u_K$.

Number of Dimensions

Discussion

- There are a few ways to choose the number of principal components K.
- K can be selected given prior knowledge or requirement.
- K can be the number of non-zero eigenvalues.
- K can be the number of eigenvalues that are large (larger than some threshold).

Reduced Feature Space

Discussion

• The original feature space is *m* dimensional.

• The new feature space is K dimensional.

 Other supervised learning algorithms can be applied on the new features.

X

Discussion

- Eigenfaces are eigenvectors of face images (pixel intensities or HOG features).
- Every face can be written as a linear combination of eigenfaces. The coefficients determine specific faces.

$$x_{i} = \sum_{k=1}^{m} \left(u_{k}^{T} x_{i} \right) u_{k} \approx \sum_{k=1}^{K} \left(u_{k}^{T} x_{i} \right) \underline{u_{k}}$$

 Eigenfaces and SVM can be combined to detect or recognize faces.

Reduced Space Example 1 Quiz

• 2017 Fall Final Q10
• If
$$u_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}$$
 and $u_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}$. If one original data is

$$\chi' = \begin{pmatrix} u_1^T \chi \\ u_2^T \chi \end{pmatrix} = \begin{pmatrix} \frac{3}{52} \\ \frac{1}{52} \end{pmatrix}$$

Reduced Space Example 1 Diagram

Reduced Space Example 2

Reduced Space Example 3

Quiz

$$\hat{\Sigma} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad M, = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\hat{\Sigma} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \text{ If one original data is } x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}. \text{ What is } x = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

the reconstructed vector using only the first two principal components?

A:
$$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, B: $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, C: $\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, D: $\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, E: $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

Autoencoder

Discussion

- A multi-layer neural network with the same input and output $y_i = x_i$ is called an autoencoder.
- The hidden layers have fewer units than the dimension of the input m.
- The hidden units form an encoding of the input with reduced dimensionality.

Kernel PCA

Discussion

 A kernel can be applied before finding the principal components.

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} \varphi(x_i) \varphi(x_i)^{T}$$

- The principal components can be found without explicitly computing φ(x_i), similar to the kernel trick for support vector machines.
- Kernel PCA is a non-linear dimensionality reduction method.