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High Dimensional Data

Motivation

e High dimensional data are training set with a lot of features.

© Document classification.
@ MEG brain imaging.
© Handwritten digits (or images in general).
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Low Dimension Representation

Motivation

@ Unsupervised learning techniques are used to find low
dimensional representation.

@ Visualization.

@ Efficient storage.

© Better generalization.

© Noise removal.
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Dimension Reduction Diagram

Motivation
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Dimension Reduction

Principal Components Variance

e Rotate the axes so that they capture the directions of the
greatest variability of data.

@ The new axes (orthogonal directions) are principal
components.
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Principal Component Analysis

Description

e Find the direction of the greatest variability in data, call it ug.

e Find the next direction orthogonal to u; of the greatest
variability, call it wup,

@ Repeat until there are uy, uo, ..., uk.
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Orthogonal Directions

Definition

@ In Euclidean space (L, norm), a unit vector ui has length 1.
== =
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e Two vectors uy, uy are orthogonal (or uncorrelated) if the dot

product is 0. RVYLANE:
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i Projection

Definition

D e u, sy F
@ The projection of x; onto a unit vector uy is the vector in the

direction of u, that is the closest to x;. uk

proj ukX,' — T Ui = Uk Xi U
Uk U -
~ \(fj*i\. o ™) ug X,
@ The length of the projection of x; onto a unit vector uy is
T
u, X;.
k i

| proj y, xif, =\ui x

/

“
u\g \A(o'f— ‘




Dimensionality Reduction Principal Component Analysis
00 0000080000000000000000000000

Project Example, Part |
Quiz (Graded)

e What is the projection of E] onto [(1)] ?

e A: 1
e B:
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Project Example, Part ||
Quiz (Graded)
1] 7 (i

1]

(SM O\ | 1
e What is the projection of [O] onto [
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@ The sample variance of a data set {xi, x2, ..., x,} is the sum of
the squared distance from the mean.
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X, ‘j) Normalization (@ )

— ( ) j), R Definition %
o ~Z) < /X ﬂ) X '\j X \j)
AY, %, D
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@ Normalize the data by subtracting the rhean, then ‘e
variance expression can be simplified.

LD ¢

n—lzx'
\,Jﬂg\



Dimensionality Reduction Principal Component Analysis
00 00000000080 0C0000000000000000

Covariance Matrix

Definition

Al

@ 2 is an m x m matrix and it is usually called the sample
covariance matrix. The diagonal elements are variances in
each dimension.
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e Note that x;; = € T x:, where ej Is the vector of 0 except it is 1 A
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Maximum Variance Directions

Definition

) ) G2 ik
YC/ eyt Qilpn Veelrs ok Covun e M
e goal is to find the direction that maximizes the projected
variance. /m%_‘é_xé—‘ ,/\\ ’r) QPL
¥ L”V«X

max u SNTP such that u uy = 1
y f— VW"&“L’/\”\
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Eigenvalue

Definition
@ The A represents the projected variance.

ul Sy = ul g = A

@ The larger the variance, the larger the variability in direction
ui. There are m eigenvalues for a symmetric positive
semidefinite matrix (for example, X7 X is always symmetric
PSD). Order the eigenvectors uj by the size of their
corresponding eigenvalues A

| > o ,\};0
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Eigenvalue Algorithm

Definition

e Solving eigenvalue using the definition (characteristic
polynomial) is computationally inefficient.

(£ = Ml) ue=0= det (£-\el) =0
R, wit o ‘OM_I\
@ There are many fast eigenvalue algorithms that computes the

spectral (eigen) decomposition for real symmetric matrices.

Columns of @ are unit eigenvectors and diagonal elements of
D are eigenvalues.

> = PDP~!, D is diagonal
= QDQ', if Qis orthogonal, i.e. QT Q = I
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Spectral Decomposition Example, Part |
Quiz (Participation)

e Given the following spectral decomposition of ¥, what is the

1 m*>

first principal component?
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Spectral Decomposition Example, Part |l

———————

@ Given the following spectral decomposition of (
the first principal component?

As (PO
* 0

~what is
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Principal Component Analysis
Algorithm

e Input: instances: {x;}_;, the number of dimensions after
reduction K < m.

e Qutput: K principal components.

o Find the largest K eigenvalues A\ > Ao > ... > Ak .

@ Return the corresponding unit orthogonal eigenvectors
ui, uz...uk .
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Reduced Feature Space

Discussion
@ The original feature space is m dimensional.

(Xflz Xi2y eees Xfm) T

@ The new feature space is K dimensional.

T
58 T T
(Ul X, U2 Xiyooey UKXJF)

@ Other supervised learning algorithms can be applied on the
new features.
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Reduced Space Example
@g Quiz (Graded)

Dimensionality Reduction
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Number of Dimensions

Discussion

@ There are a few ways to choose the number of principal
components K.

@ K can be selected given prior knowledge or requirement.
@ K can be the number of non-zero eigenvalues.

@ K can be the number of eigenvalues that are large (larger
than some threshold).
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Reconstruction Error

Discussion

@ Reconstruction error is the squared error (distance) between
the original data and its projection onto wuy. A/

- 2 v, reCaarmndy
i = (ulx) il cm
/}C{CIV“L/'

e Finding the variance maximizing directions is the same ai
finding the reconstruction error minimizing directions.
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Reconstruction Error Diagram

Discussion
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Autoencoder

Discussion

@ A multi-layer neural network with the same input and output
y; = X; Is called an autoencoder.

@ The hidden layers have fewer units than the dimension of the
iInput m.

@ The hidden units form an encoding of the input with reduced
dimensionality.
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Autoencoder Diagram

Discussion

'S X,
i
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Eigenface

Discussion

e Eigenfaces are eigenvectors of face images (pixel intensities or
HOG features).

e Every face can be written as a linear combination of
eigenfaces. The coefficients determine specific faces.

5= 3 (o) o~ 3 ()

e Eigenfaces and SVM can be combined to detechor recognize
faces.
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Kernel PCA

Discussion

@ A kernel can bexapplied before finding the pfincipal
components.

i = (X,‘) ¢ (XI)T

1

n—1 4

/

1 n

@ The principal components can be found™without explicitly

computing ¢ (X;), similar to the kernel trickNor support vector
machines

e Kernel PCA is a non-linear dimensionality reductiobnmethod.
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T-Distributed Stochastic Neighbor Embedding

Discussion

e t-distributed stochastic neighbor embedding is another
non-linear dimensionality reduction method used mainly for
visualization.

am—

@ Points in high dimensional spaces are embedded in 2 or
3-dimensional spaces to preserve the distance (neighbor)
relationship between points.
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Embedding Diagram

Discussion

presee. o
A = %






