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Low Dimension Representation

Motivation

@ Unsupervised learning techniques are used to find low
dimensional representation.

© Visualization.
@ Efficient storage.
© Better generalization.

© Noise removal.
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Dimension Reduction Diagram

Motivation

VS




Dimensionality Reduction Principal Component Analysis Non-linear PCA
O 00000000000 0000000 O

Projection_
"~ Definition
|
L : engtl ) :
@ The projection of x; onto a unit Vector JZ Is the vector in the
direction of u, that is the closest to x;. |
— oY,
, UZ-Xi T ,
pProj ukX,' = T Uk \= U XjUy
A~ _ 4
e The length of the projection of x; onto a unit vector uy is J
T
Uk X,'.

" proj ukx,-H2 :(u,;rx,- \
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Maximum Variance Directions >k

Definition
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@ The goal is to find the direction that maximizes the pro'!ected
variance.
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Projection Example 1
Quiz
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Projection Example 2

Quiz
A 5
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e What is the projection of [0] onto [ ] ! b
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Projection Example 3

Q 6} Quiz
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e What is the projection of | 2 [onto”| 1 ?/
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Projection Example 4

Q Ol Quiz

3 1

e What is the projection of |2 | onto | 1| 7
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Spectral Decomposition Example 1
Quiz

@ Given the following spectral decomposition of S, what is the
first principal component?
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Spectral Decomposition Example 2
Quiz

(OARY,

@ Given the following spectral decomposition of S, what is the
first principal component?
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Spectral Decomposition Example 3
Quiz

0 0
°o ¥ = @ 0| , what is the second principal component?
0 1
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e Input: instances: {x;}_;, the number of dimensions after
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Principal Component Analysis
Algorithm

reduction K < m.

Output: K principal components.

Find the largest K eigenvalues A\1 > \> > ... > A .

Return the corresponding unit orthogonal eigenvectors
i, W...Uk .

Non-linear PCA
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Number of Dimensions

Discussion

@ There are a few ways to choose the number of principal
components K.

— . . .
@ K can be selected given prior knowledge or requirement.

@ K can be the number of non-zero eigenvalues.

@ K can be the number of eigenvalues that are_large (larger
than some threshold). >
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Reduced Feature Space

~
PC /’\ Discussion

e The original feature space is m dimensional.

-
(Xi1, Xi2y +-e5 Xim) s
@ The new\feature space is K dimensional.

T
ul-r;) u;-X,', cony u;x,-)

_\

v

@ Other supervised learning algorithms can be applied on the
new features.

e ——
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Eigenface

Discussion

i pn ol

/-f‘

o Eigenfaces are eigenvectors of face images (pixel intensities or
HOG features).

e Every face can be written as a linear combination of
eigenfaces. The coefficients determine specific faces.

e Eigenfaces and SVM can be combined to detect or recognize

faces.
(~NoAs Le}«‘lw)
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Reduced Space Example 1
Quiz
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Reduced Space Example 1 Diagram
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Reduced Space Example 2
@ \> Quiz
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@ 2= |0 3 0] . Ifoneoriginal dataisx= |2| . What is




Dimensionality Reduction Principal Component Analysis
) 0000000000000 0CCoCe

Reduced Space Example 3

Quiz
ey

2 00 1
@ 2= |0 3 0] . Ifoneoriginal datais x = |2

3

Non-linear PCA

. What is

the reconstructed vector using only the first two principal

components?

vi (2 (2] 1
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Autoencoder

pCA ~ Discussion
T e aetMaten G Rwth

o= §( R 15)

: . W\ N
@ A multi-layer neural network with the same input and output
yi = x; 1s called an autoencoder.

@ The hidden layers have fewer units than the dimejwsion of the

input m. o LW F(
@ The hidden units form an encoding of the input with reduced
dimensionality.
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Kernel PCA

Discussion

@ A kernel can be applied before finding the principal
components.

e The principal components can be found without explicitly

computing ¢ (x;), similar to the kernel trick for support vector
machines. S

e Kernel PCA is a non-linear dimensionality reduction method.





