CS540 Introduction to Artificial Intelligence Lecture 12

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

July 13, 2020

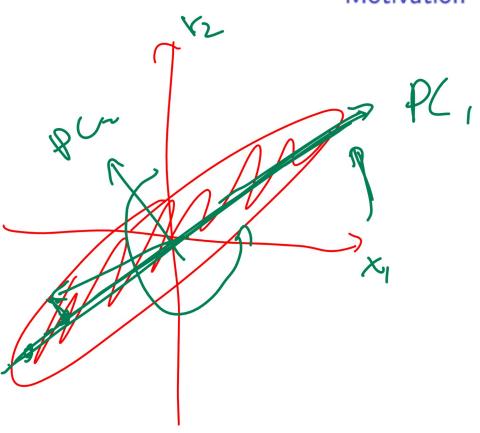
Low Dimension Representation

Motivation

- Unsupervised learning techniques are used to find low dimensional representation.
- Visualization.
- ② Efficient storage.
- Better generalization.
- Noise removal.

Dimension Reduction Diagram

Motivation



max varien

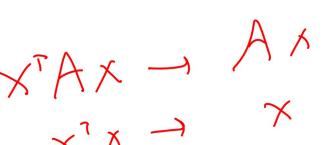
• The projection of x_i onto a unit vector u_k is the vector in the direction of u_k that is the closest to x_i .

$$\operatorname{proj}_{u_k} x_i = \underbrace{\left(\frac{u_k^T x_i}{u_k^T u_k}\right) u_k} = u_k^T x_i u_k$$

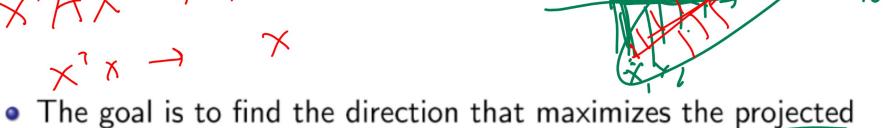
• The length of the projection of x_i onto a unit vector u_k is $u_k^T x_i$.

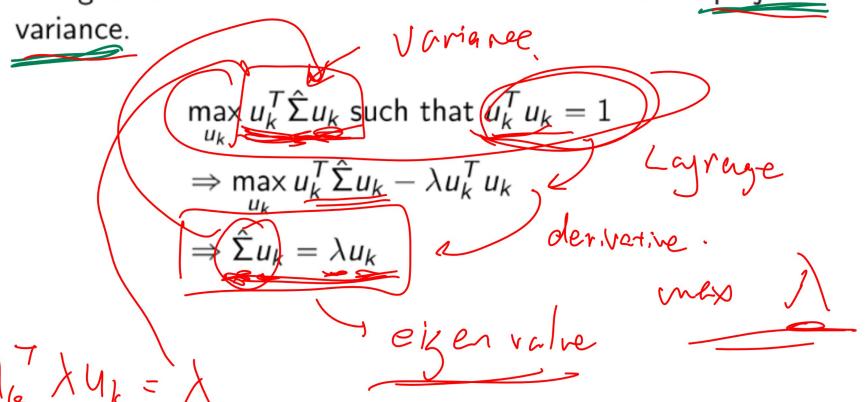
$$\|\operatorname{proj}_{u_k} x_i\|_2 = \underbrace{u_k^T x_i}$$

Maximum Variance Directions



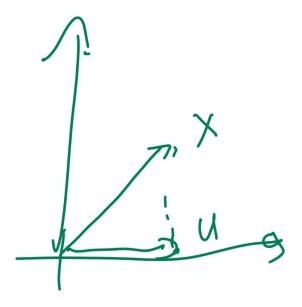
Definition





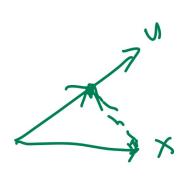
Projection Example 1 Quiz

• What is the projection of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ onto $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$? 0



Projection Example 2

• What is the projection of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ onto $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$?



$$\frac{u^{7}x}{u^{7}u}$$

$$= \frac{1}{2} \cdot \left(\frac{1}{1}\right)^{7} \cdot \left(\frac{1}{2}\right)$$

Projection Example 3

Quiz

• What is the projection of
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 onto $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$?

$$\frac{u^{7}x}{u^{7}u}$$

$$= \frac{6}{3} \left(\frac{1}{1} \right) = \left(\frac{2}{3} \right)$$

Projection Example 4

Quiz

- What is the projection of $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ onto $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$?
- A: $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$
- B: [2 2 2]^T
- C: [3 3 3]
- D: [4 4 4]^T
- E: [6 6 6]^T

 Given the following spectral decomposition of Σ, what is the first principal component?

$$\hat{\Sigma} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$PC_{1} \rightarrow \begin{bmatrix} O \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} O \\ 1 \\ 0 \end{bmatrix}$$

$$PC_{2} \rightarrow \begin{bmatrix} O \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} O \\ 1 \\ 0 \end{bmatrix}$$

$$PC_{3} = \begin{bmatrix} O \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Dimensionality Reduction

Spectral Decomposition Example 2

• Given the following spectral decomposition of $\hat{\Sigma}$, what is the first principal component?

$$\hat{\Sigma} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 3 & 0 \\ 0 & 3 & 1 \end{bmatrix}$$

• A: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, B: $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ C: $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, D: $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, E: $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Spectral Decomposition Example 3

QII

$$\hat{\Sigma} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{, what is the second principal component?}$$

$$A: \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, B: \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, C: \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, D: \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, E: \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Principal Component Analysis Algorithm

- Input: instances: $\{x_i\}_{i=1}^n$, the number of dimensions after reduction K < m.
- Output: K principal components.
- Find the largest K eigenvalues $\lambda_1 \geqslant \lambda_2 \geqslant ... \geqslant \lambda_K$.
- Return the corresponding unit orthogonal eigenvectors $u_1, u_2...u_K$.

Number of Dimensions

Discussion

- There are a few ways to choose the number of principal components K.
- K can be selected given prior knowledge or requirement.
- K can be the number of non-zero eigenvalues.
- K can be the number of eigenvalues that are large (larger than some threshold).

Reduced Feature Space

Discussion

• The original feature space is m dimensional.

$$\left(x_{i1},x_{i2},...,x_{im}\right)^T$$

• The new feature space is K dimensional.

$$\left(u_1^T x_i, u_2^T x_i, ..., u_K^T x_i\right)^T$$

 Other supervised learning algorithms can be applied on the new features.

Eigenface Discussion

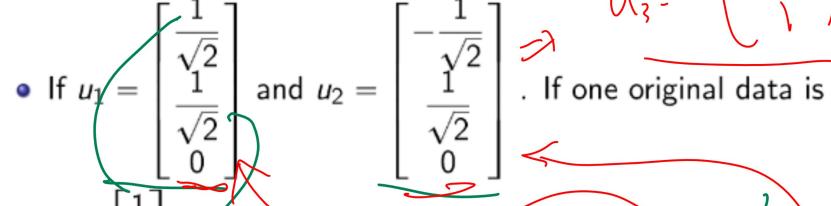
- in m dm
- Eigenfaces are eigenvectors of face images (pixel intensities or HOG features).
- Every face can be written as a linear combination of eigenfaces. The coefficients determine specific faces.

$$x_i = \sum_{k=1}^m \left(u_k^T x_i \right) \underline{u}_k \approx \sum_{k=1}^K \left(u_k^T x_i \right) \underline{u}_k$$

 Eigenfaces and SVM can be combined to detect or recognize faces.

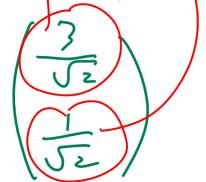
Reduced Space Example 1

Quiz

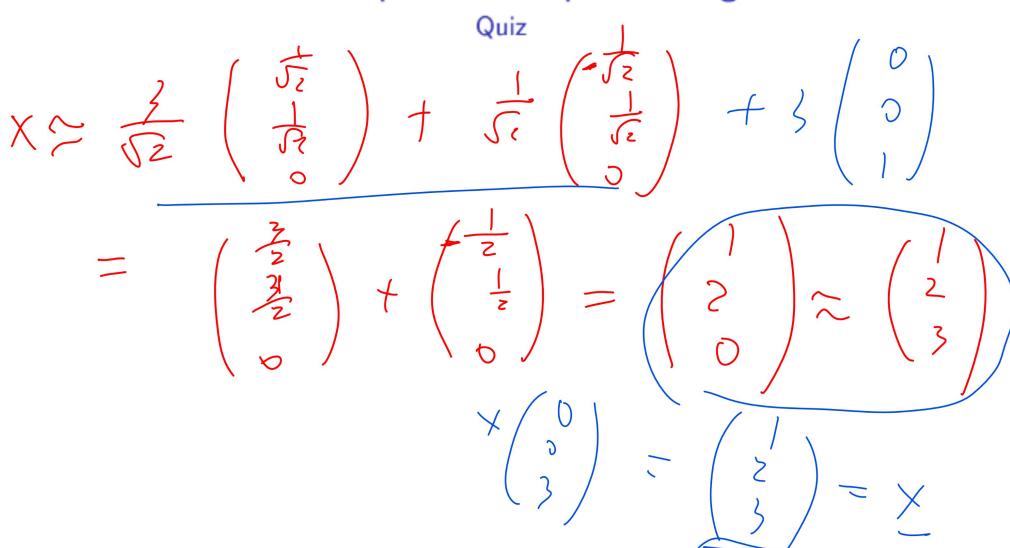


$$x = \begin{bmatrix} 2 \end{bmatrix}$$
. What is the new representation?

$$\left(\begin{array}{c} \mathcal{U}_{1} \cdot \mathcal{X} \\ \mathcal{U}_{2} \cdot \mathcal{X} \end{array}\right) =$$



Reduced Space Example 1 Diagram



Reduced Space Example 2

Quiz

$$\hat{\Sigma} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• $\hat{\Sigma} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. If one original data is $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. What is

the new representation using only the first two principal components?

• A:
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, B: $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, C: $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, D: $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$, E: $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Reduced Space Example 3

Quiz

•
$$\hat{\Sigma} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. If one original data is $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. What is

the reconstructed vector using only the first two principal components?

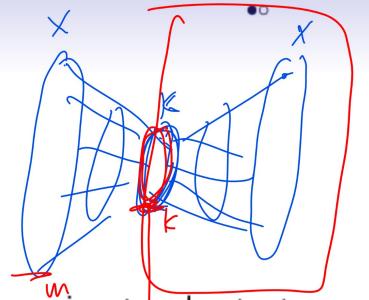
• A:
$$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, B: $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, C: $\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, D: $\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, E: $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

$$2 \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$$

Autoencoder

pcA ~ aetNation a= xw+b

a=g(xrw+b)



 A multi-layer neural network with the same input and output $y_i = x_i$ is called an autoencoder.

 The hidden layers have fewer units than the dimension of the non brew PCA input *m*.

 The hidden units form an encoding of the input with reduced dimensionality.

 A kernel can be applied before finding the principal components.

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} \varphi(x_i) \varphi(x_i)^T$$

$$Mim$$

- The principal components can be found without explicitly computing φ(x_i), similar to the kernel trick for support vector machines.
- Kernel PCA is a non-linear dimensionality reduction method.