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CS540 Introduction to Artificial Intelligence
Lecture 12

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles
Dyer

July 8, 2021
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Practice Exam
Admin

e Grades updated.

e Game results posted.

e M14 Q12, 13,14 will be on both versions of the midterm
(same question with different randomization).

e M3 Q9 will be on the midterm (same question with different
randomization).

e A modified version of M4 Q9 will be on the midterm (the
question will be "add a point so that all points are support

vectors” ). 1
_ _ e 20))
e Did | forget something? A9 /
_— ——

POSQJ o Plzm.
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Homework
Admin

@ Please do not submit M8 to M11.
o |f you haven't started P1: you should.

e P2 solutions are posted.

o If you use another student's code (or find code on the
Internet), you must give attribution at the beginning of your
code.

@ You are not allowed use another student’s output.
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Remind Me to Start Recording
Admin

@ The messages you send in chat will be recorded: you can
change your Zoom name now before | start recording.
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Bayes Net Inference Example 1 | O,W(E\qﬁ\
Quiz — proyalilvig-
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Bayes Net Inference Example 2

@ [Q Quiz B"'-] ?M

/
5‘;‘;/ /\‘P(%“\' L~
aComPutew j W%

MB—I}—@%@L—H—OOM

P{P=1B=1,L=1}=095P{P=1/B=1,L=0}=0.29
P{P=1B=0,L=1}=094P{P=1|B=0,L=0}=0.00

o A: 0, C: 0.0094, D: 0.0095, E: 1
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) | Bayes Net Inference Exam i
- . B;LL\),?’.‘I(

B ~ Pre=)t

X\ IP’{P—1|B—1L—1} =1|B=1. =0}=0.29
= | P{P=1B=0L=1}=0.94P{P=1|B=0,L% 0} =0.00

YRRl P(w@

e A:(0.001-0.001, B: 0.001-0.001-0.95

0.001 moo) 0 EON \ O

C:
0.001-0.95+0.999 - (0.94 + 0.29)—— 3,;//
0.001 - 0.001

D :
0.001 - 0.95 + 0.999 - (0.94 + 0.29)

. 0.001-0.95-0.00]) _
@001-0.95%.999 (0. 94+029y 0.00)
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- et | . Q/LI\EBN,L\, AR AT
aves Net Inference £xample Com utatlon
y j - < p P

= ?ri(PJ-l,B:o. L’/°§’F Qoﬂglm
ﬁ o, > -ﬁ (9\07‘("0\)\93 + 0.,00]

| L3>~ 0,29 0.00/ 0.4
0\%' 0,09/,0.001

\

P{P=1B=1L=1}=095P{P=1B=1L=0}=0.29
T P{P=1B=0,L=1) =0.94@B=0.@ = 0.00

———————
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Types of Bayes Net Components

Discussion

%\qxaqxf

@ Causal Chain

e Common Cause /\/\‘/] Xy
e Common Effect Q/ P
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Network Structure

Discussion

e Selecting from all possible structures (DAGs) is too difficult.

e Usually, a Bayesian network is learned with tructure.
@ Choose the tree that maximizes the likelihood of the training

data.
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(mwfquﬁ'mQ»
Chow Liu Algorithm InCCan (%, [\
Discussion ,/ T (X;\ XL )

® Add an edge between features X; and Xj» with edge weight
equal to the information gain of X; given Xj for all pairs INGg

e Find the maximum spanning tree given these edges. The
spanning tree is used as the structure of the Bayesian network.
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Classification Problem

Discussion

e Bayesian networks do not have a clear separation of the label
Y and the features Xi, Xs, .... Xim.

° I ’he Bayesian network with a tree structure and Y as the root
and ﬁ" , Xm as the leaves is called the Naive Bayes

¢ Bayes rules is used to compute P{Y = y|X = x}, and the
prediction y is y that maximizes the conditional probability.

AT gy

& X, \Xk e ¢ “/JL\\’?
ROl wrx, Yy ek P X
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Discussion

B AR
PJ\< i d Pf\m/,Xvs

AR N IR

TS B v vv
& y X"Y’Yw

V\I\A)[ Yr(\ft—w K%L,Xﬁxg
B 0)7,,2 . - \f——

&( Naive Bayes Diagram
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Tree Augmented Network Algorlthm

Discussion

RNN Variants

e It is also possible to create a Bayesian tw6rk\wﬂl;u) W—

features Xi, Xz, ..., X, connected to Y ({ Naive Bayes edg

and the features themselves form a netwusually a tree

MST edges).

e Information gain is replaced by conditional information gain

(éonditional on Y) when finding the maximum spanning tree.

@ This algorithm is called TAN: Tree Augmented Network.

— —
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Tree Augmented Network Algorithm Diagram

Discussion
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Special Bayesian Network for Sequ"oea Aa’h

Motivation

Co it (K Ao — X “*?S» —
_L ! L)S'DOC“V""

9 S o

\/\/’J\“OQE z Y} ‘“f’ SO

o A sequence of features X1, X2, ... can be m odeled by a Markov \
Chain but they are not observable.

e A sequence of labels Y3, Y2, ... depends only on the current
hidden features and they are observable.

o This type of Bayesian Network is called a Hidden Markov
Model. —) RNz 5@@&:\4

— W TRk A ni'e 4 beoe|

hf 4

C—  ——
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Hidden Markov Model Diagram

Motivation
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Evaluation and Training

Motivation

@ [here are three main tasks associated with an HMM.

© Evaluation problem: finding the probability of an observed

sequence given an HMI\@

@ Decoding problem: finding the most probable hidden sequence

given the observed sequenc@

© Learning problem: finding the most probable HMM given an
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Expectation-Maximization Algorithm

Description

e Start with a random guess of 7, A, B.

e Compute the forward probabilities: the joint probability of an
observed sequence and its hidden state.

e Compute the backward probabilities: the probability of an
observed sequence given its hidden state.

e Update the model 7, A, B using Bayes rule.

@ Repeat until convergence.

e Sometimes, it is called the Baum-Welch Algorithm.



Hidden Markov Model Recurrent Neural Network RNN Variants

00000000000 CO00000e00000 Q00000 0
Hidden Markov Model Example 1
Definition

o on T

e Compute P{X; =1, X5 = 2| X3 = 0}.
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Hidden Markov Model Example 1 Computations

Definition
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Hidden Markov Model Example 2

Definition

e Compute P{Y; =0, Y> =1}
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Hidden Markov Model Example 2 Computations

Definition
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Hidden Markov Model Example 3

Definition

o Compute ]P’{Xl = O,XQ = 2|Y1 = 0, Y> = 1}.
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Hidden Markov Model Example 3 Computations

Definition
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Dynamic System Diagram

Motivation
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Recurrent Neural Network Structure Diagram

Motivation
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Activation Functions

Definition

@ The hidden layer activation function can be the tanh
activation, and the output layer activation function can be the

softmax function. M
{
L0 (0 (h) 00 p(x)
,.,é Xt +_V|_é 35_! b \/‘ @
( ) ( ;
§.

-8 & ([-]) = tanh ([-]) T

(Y) g((y)),g(-)=softmax(-) e
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Cost Functions

Definition

@ Cross entropy loss is used with softmax activation as usual.
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BackPropogation Through Time

Definition

e The gradient descent algorithm for recurrent neural networks
is called BackPropogation Through Time (BPTT). The

update procedure is the same as standard neural networks
using the chain rule.
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Unfolded Network Diagram
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Vanishing and Exploding Gradient

Discussion

e If the weights are small, the gradient through many layers will
shrink exponentially. This is called the vanishing gradient
problem.

e If the weights are large, the gradient through many layers will
grow exponentially. This is called the exploding gradient
problem.

e Fully connected and convolutional neural networks only have a
few hidden layers, so vanishing and exploding gradient is not a
problem in training those networks.

@ In a recurrent neural network, if the sequences are long, the

gradients can easily vanish or explode. v"rmw
> ST CRW





