CS540 Introduction to Artificial Intelligence Lecture 15

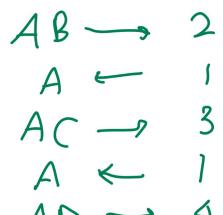
Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

July 20, 2020

Bridge and Torch Game 1

Motivation


 Four people with one flashlight (torch) want to go across a river. The bridge can hold two people at a time, and they must cross with the flashlight. The time it takes for each person to cross the river:

Α	В	С	D
1	2	3	4

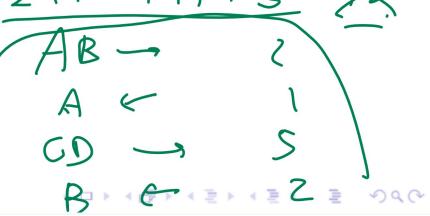
What is the minimum total time required for everyone to cross

the river?

• A: 10, B: 11, C: 12, D: 13, E: 14

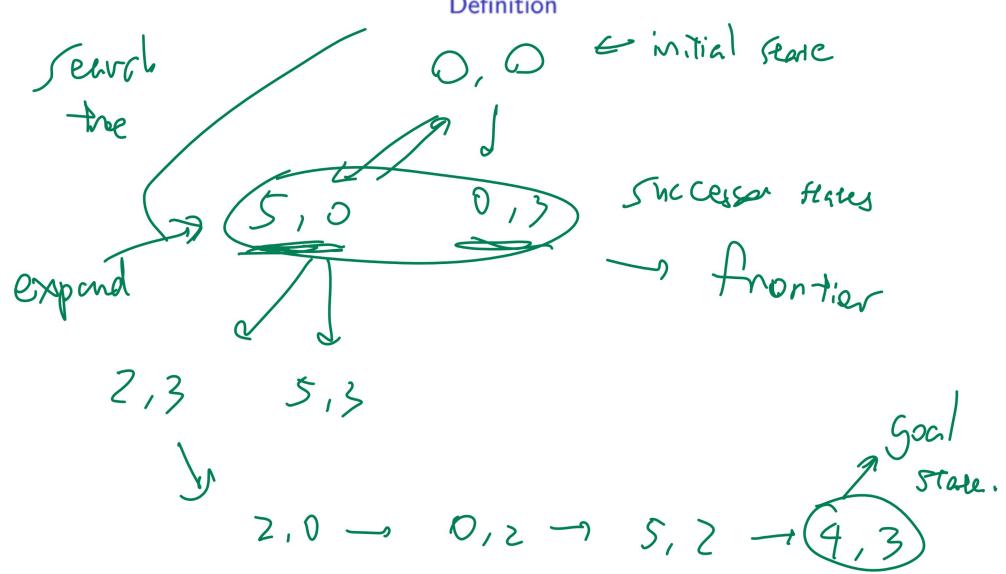
Bridge and Torch Game 2

Motivation


02

 Four people with one flashlight (torch) want to go across a river. The bridge can hold two people at a time, and they must cross with the flashlight. The time it takes for each person to cross the river:

Α	В	С	D
1	2	4	5


• A: 10, B: 11, C: 12, D: 13, E: 14

Water Jugs Example

Performance

Definition

- A search strategy is complete if it finds at least one solution.
- A search strategy is optimal if it finds the optimal solution.
- For uninformed search, the costs are assumed to be 1 for all edges c = 1.

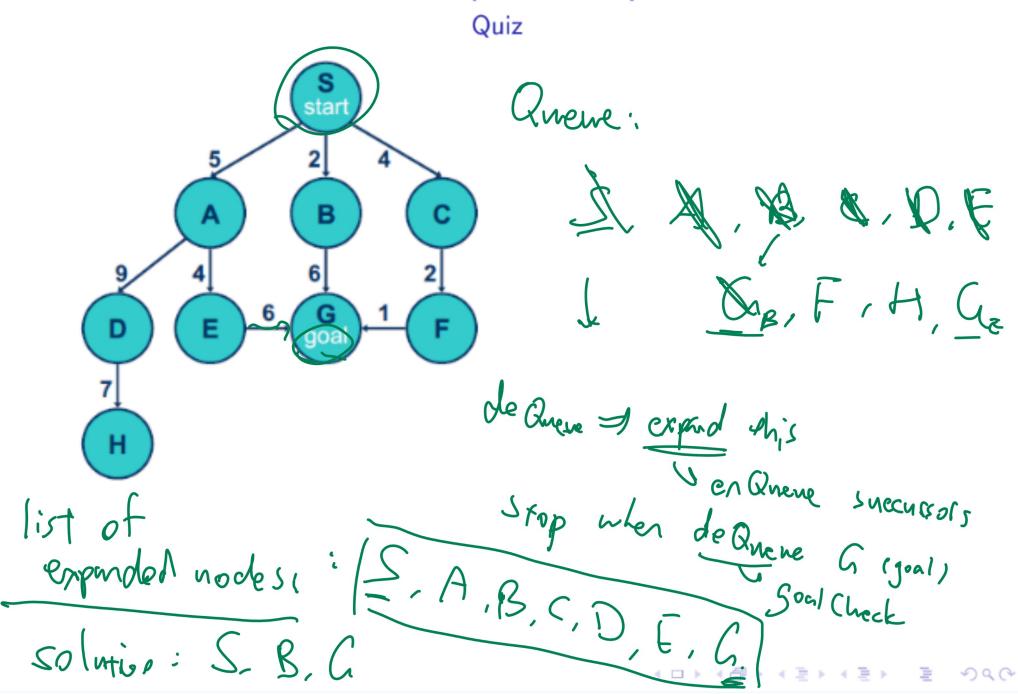
Complexity

Definition

- The time complexity of a search strategy is the worst case maximum number of vertices expanded.
- The space complexity of a search strategy is the worst case maximum number of states stored in the frontier at a single time.
- Notation: the goals are d edges away from the initial state.
 This means assuming a constant cost of 1, the optimal solution has cost d. The maximum depth of the graph is D.
- Notation: the branching factor is b, the maximum number of actions associated with a state.

$$b = \max_{s \in V} \left| s'\left(s\right) \right|$$

Search Tree Diagram

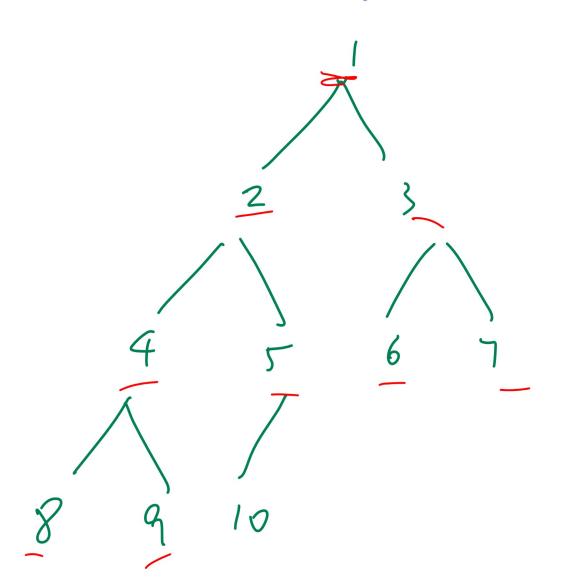

Definition

Breadth First Search

Description

- Use Queue (FIFO) for the frontier.
- Remove from the front, add to the back.

BFS Simple Example

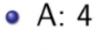


BFS Example 1 Quiz

- Fall 2018 Midterm Q2, Fall 2017 Midterm Q13, Fall 2010 Final Q2
- Suppose the states are positive integers between 1 and 10, initial state is 1, goal state is 9, successors of i is 2i and 2i + 1 (if exist). What a BFS expansion sequence?

BFS Example 1 Diagram

Quiz

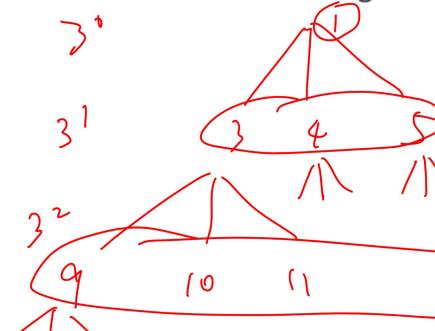


expansion sequence: 1.2,3, 4,5,6,7,8,9

Quiz

Q3

Suppose the states are integers between 1 and 28. The initial state is 1, and the goal state is 28. The successors of a state i are 3i, 3i + 1, 3i + 2, if exist. How many states are expanded during a BFS search? Include both the initial and goal states.



B: 5

• D: 15

The initial state is 1, and the goal state is 1024. The successors of a state i are 2i and 2i + 1, if exist. How many states are expanded during a BFS search?

• A: 10

B: 11

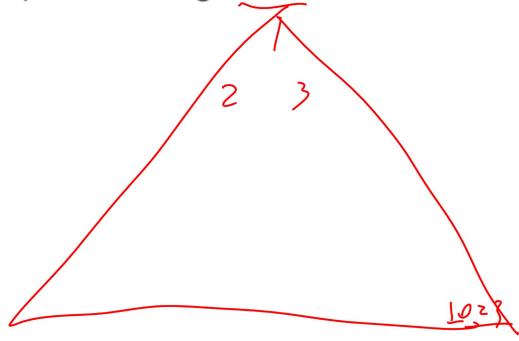
• C: 12

D: 1023

E: 1024

Quiz

• Suppose the states are integers between 1 and $2^{10} - 1 = 1023$. The initial state is 1, and the goal state is 1023. The successors of a state i are 2i and 2i + 1, if exist. How many states are expanded during a BFS search?


• A: 10

B: 11

• C: 12

D: 1023

E: 1024

Breadth First Search

Algorithm

- Input: a weighted digraph (V, E, c), initial states I and goal states G.
- Output: a path from I to G.
- EnQueue initial states.

$$Q = I$$

 While Q is not empty and goal is not deQueued, deQueue Q and enQueue its successors.

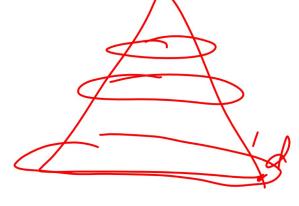
$$s = Q_0$$
$$Q = Q + s'(s)$$

Breadth First Search Performance

Discussion

- BFS is complete.
- BFS is optimal with c = 1.

Breadth First Search Complexity


Discussion

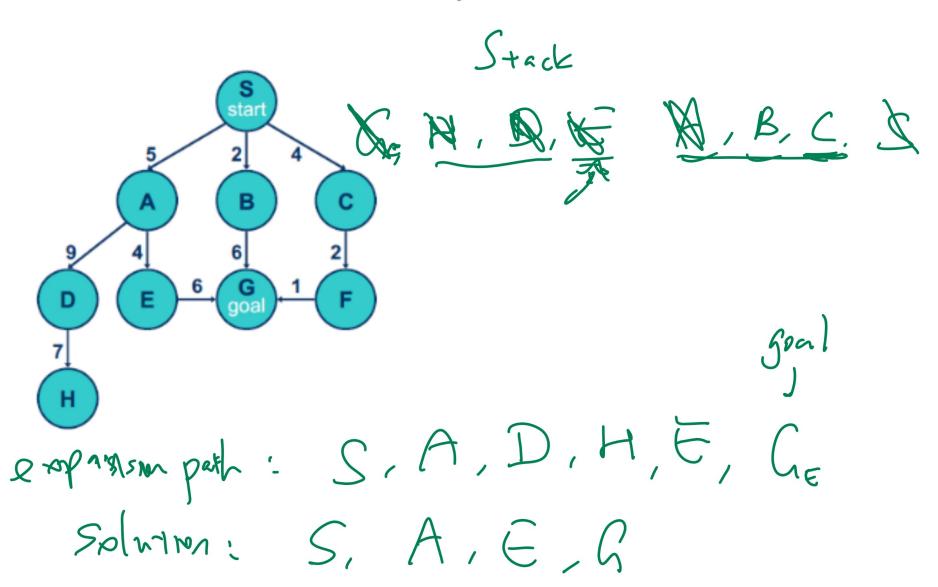
 Time complexity: the worst case occurs when the goal is the last vertex at depth d.

$$T = b + b^2 + ... + b^d$$

 Space complexity: the worst case is storing all vertices at depth d is in the frontier.

$$S = b^d$$

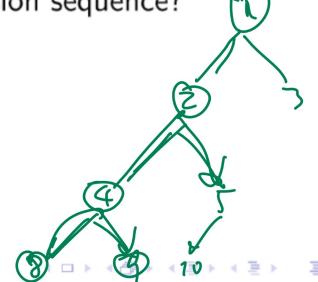
Depth First Search


Description

- Use Stack (LIFO) for the frontier.
- Remove from the front, add to the front.

0000000000000000000

DFS Simple Example


Quiz

DFS Example 1 Quiz

- Fall 2018 Midterm Q2, Fall 2017 Midterm Q13, Fall 2010
 Final Q2
- Suppose the states are positive integers between 1 and 10, initial state is 1, goal state is 9, successors of i is 2i and 2i + 1 (if exist). What a DFS expansion sequence?

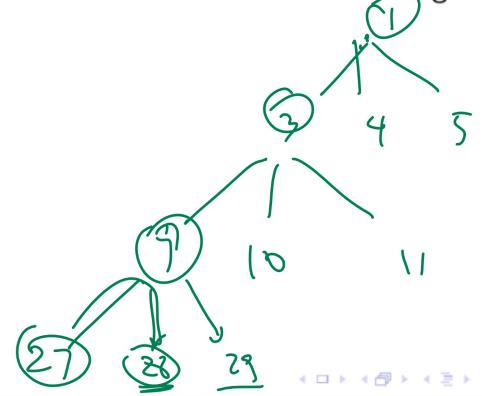
1, 2, 4,8,9

DFS Example 1 Diagram

06

PS

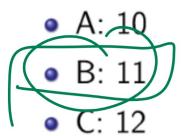
• Suppose the states are integers between 1 and 28. The initial state is 1, and the goal state is 28. The successors of a state i are 3i, 3i + 1, 3i + 2, if exist. How many states are expanded during a DFS search? Include both the initial and goal states.


A: 4

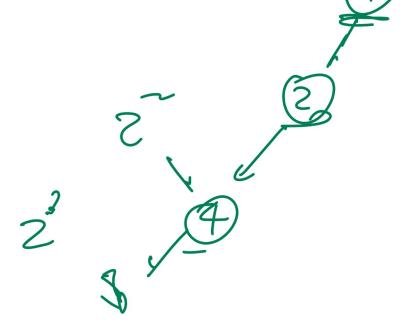
B: 5

C: 14

• D: 15


E: 28

Quiz


Q

• Suppose the states are integers between 1 and $2^{10} = 1024$. The initial state is 1, and the goal state is 1024. The successors of a state i are 2i and 2i + 1, if exist. How many states are expanded during a DFS search?

D: 1023

E: 1024

Quiz

• Suppose the states are integers between 1 and $2^{10} - 1 = 1023$. The initial state is 1, and the goal state is 1023. The successors of a state *i* are 2*i* and 2*i* + 1, if exist. How many states are expanded during a DFS search?

• A: 10

B: 11

• C: 12

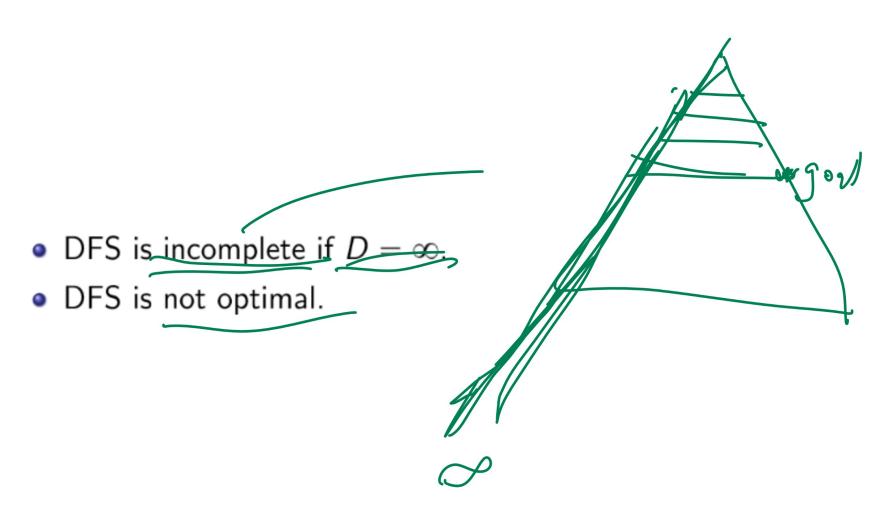
• D: 1023

• E: 1024

Depth First Search

Algorithm

- Input: a weighted digraph (V, E, c), initial states I and goal states G.
- Output: a path from I to G.
- Push initial states.


$$S = I$$

 While S is not empty and goal is not popped, pop S and push its successors.

$$s = S_0$$
$$S = s'(s) + S$$

Depth First Search Performance

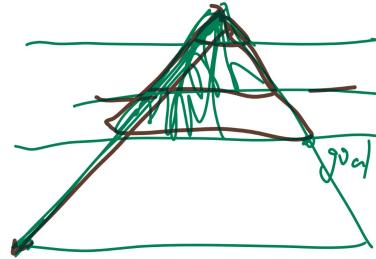
Discussion

Depth First Search Complexity

Discussion

 Time complexity: the worst case occurs when the goal is the root of the last subtree expanded in the whole graph.

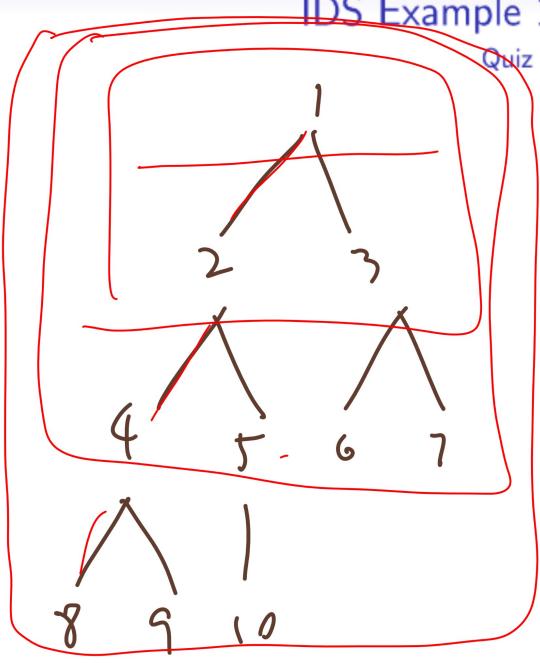
$$T = b^{D-d+1}... + b^{D-1} + b^{D}$$


 Space complexity: the worst case is storing all vertices sharing the parents with vertices in the current path.

$$S = (b-1)D + 1$$

Iterative Deepening Search Description

- ullet DFS but stop if path length > 1
- repeat DFS but stop if path length > 2
- ...
- repeat DFS but stop if path length > d



IDS Simple Example Quiz

IDS Example 1 Quiz

- Fall 2018 Midterm Q2, Fall 2017 Midterm Q13, Fall 2010
 Final Q2
- Suppose the states are positive integers between 1 and 10, initial state is 1, goal state is 9, successors of i is 2i and 2i + 1 (if exist). What a IDS expansion sequence?

depoh I'm

2 1,2,3

 $3 \rightarrow 1, 7, 4, 5, 3, 6, 7$

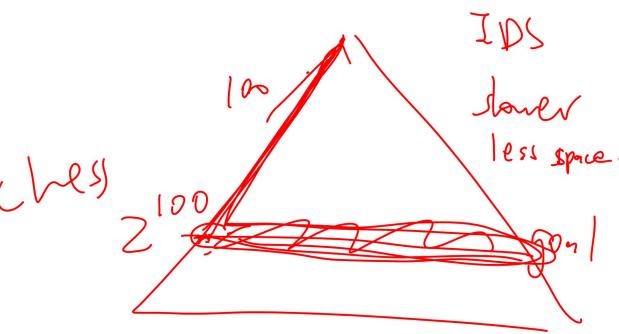
4 -> 1,2,4,8,9

IDS Example 2

Quiz

this Thur and Fri.

Suppose the states are integers between 1 and 28. The initial state is 1, and the goal state is 28. The successors of a state i are 3i, 3i + 1, 3i + 2, if exist. How many unique states are expanded during a IDS search? Include both the initial and goal states.

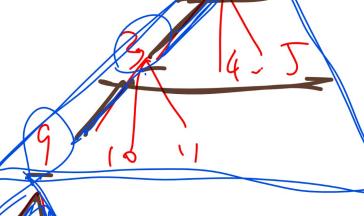

A: 4

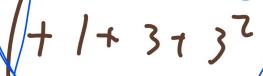
B: 5

C: 14

D: 15

• E: 28




Suppose the states are integers between 1 and 28. The initial state is 1, and the goal state is 28. The successors of a state i are 3i, 3i + 1, 3i + 2, if exist. How many states are expanded during a IDS search in total (counting repeated ones)?

Include both the initial and goal states.

- B: 15 + 9 24
- C: 15 + 13
- D: 15 + 17
- E: 15/+ 18

Iterative Deepening Search

Algorithm

- Input: a weighted digraph (V, E, c), initial states I and goal states G.
- Output: a path from I to G.
- Perform DFS on the digraph restricted to vertices with depth
 ≤ 1 from the initial state.
- Perform DFS on the digraph restricted to vertices with depth
 ≤ 2 from the initial state.
- Repeat until the goal is deQueued.

Iterative Deepening Search Performance

Discussion

- IDS is complete.
- IDS is optimal with c = 1.

Iterative Deepening Search Complexity

Discussion

 Time complexity: the worst case occurs when the goal is the last vertex at depth d.

$$T = db + (d-1)b^{2} + ... + 3b^{d-2} + 2b^{d-1} + 1b^{d}$$

Space complexity: it has the same space complexity as DFS.

$$S = (b-1) d$$

Configuration Space

Discussion