CS540 Introduction to Artificial Intelligence Lecture 17

Young Wu
Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles

Dyer

July 5, 2020

Traveling Salesperson Example

Search vs. Local Search

Motivation

- Some problems do not have an initial state and a goal state.
- Every state is a solution. Some states are better than others, defined by a cost function (sometimes called score function in this setting), f(s).
- The search strategy will go from state to state, but the path between states is not important.
- There are too many states to enumerate, so standard search through the state space methods are too expensive.

Local Search

Motivation

- Local search is about searching through a state space by iteratively improving the cost to find an optimal or near-optimal state.
- The successor states are called the neighbors (sometimes move set).
- The assumption is that similar (nearby) solutions have similar costs.

Local Search Application

Motivation

- Optimization problems (gradient descent methods are all local search methods) x
- Traveling salesman
- Boolean satisfiability (SAT)
- Scheduling —

Hill Climbing (Valley Finding)

Description

- Start at a random state
- Move to the best neighbor state (one of the successors).
- Stop when all neighbors are worse than the current state.
- The idea is similar to gradient descent.

Hill Climbing Algorithm

- Input: state space S and cost function f.
- Output: $s^* \in S$ that minimizes f(s).
- Start at a random state s₀.
- At iteration t, find the neighbor that minimizes f.

$$s_{t+1} = \arg\min_{s \in s'(s_t)} f(s)$$

Stop when none of the neighbors have a lower cost.

stop if
$$f(s_{t+1}) \leq f(s_t)$$

Hill Climbing Performance

- It does not keep a frontier, so no jumping and no backtracking.
- It is simple, greedy, and stops at a local minimum.

Random Restarts

Discussion

 A simple modification is picking random initial states multiple times and finding the best among the local minima.

First Choice Hill Climbing

- If there are too many neighbors, randomly generate neighbors until a better neighbor is found.
- This method is called first choice hill climbing.

Walk SAT Example

- Pick a random unsatisfied clause.
- Select and flip a variable from that clause:
- With probability p, pick a random variable.
- ② With probability 1 p, pick the variable that maximizes the number of satisfied clauses.
 - Repeat until the solution is found.
 - Walk SAT uses the idea of stochastic hill climbing.

Simulated Annealing

Description

- Each time, a random neighbor is generated.
- If the neighbor has a lower cost, move to the neighbor.
- If the neighbor has a higher cost, move to the neighbor with a small probability.
- Stop until bored.
- It is a version of Metropolis-Hastings Algorithm.

Annealing Definition

- The annealing process of heated solids.
- Anneal: to subject (glass or metal) to a process of heating and slow cooling to toughen and reduce brittleness.
- Alloys manage to find a near global minimum energy state when heated and then slowly cooled.

Acceptance Probability

Definition

- The probability of moving to a state with a higher cost should be small.
- Constant: p = 0.1
- ② Decreases with time: $p = \frac{1}{t}$
- Oecreases with time and as the energy difference increases:

$$p = \exp\left(-\frac{\left|f\left(s'\right) - f\left(s\right)\right|}{\left(\text{Temp}\left(t\right)\right)}\right)$$

 The algorithm corresponding to the third idea is called simulated annealing. Temp should be a decreasing in time (iteration number).

Temperature

Definition

 Temp represents temperature which decreases over time. For example, the temperature can change arithmetically or geometrically.

- High temperature: almost always accept any s'.
- Low temperature first choice hill climbing.

Simulated Annealing

Algorithm

- Input: state space S, temperature function Temp, and cost function f.
- Output: $s^* \in S$ that minimizes f(s).
- Start at a random state s₀.
- At iteration t, generate a random neighbor s', and update the state according to the following rule.

$$s_{t+1} = \begin{cases} s' & \text{if } f\left(s'\right) < f\left(s_{t}\right) \\ s' & \text{with probability } \exp\left(-\frac{\left|f\left(s'\right) - f\left(s_{t}\right)\right|}{\mathsf{Temp}\left(t\right)}\right) \\ s_{t} & \text{otherwise} \end{cases}$$

Simulated Annealing Performance

- Use hill-climbing first.
- Neighborhood design is the most important.
- In theory, with infinitely slow cooling rate, SA finds global minimum with probability 1.

Genetic Algorithm

Description

- Start with a fixed population of initial states.
- Find the successors by:
- Cross over.
- Mutation.

Reproduction Probability

Definition

• Each state in the population has probability of reproduction proportional to the fitness. Fitness is the opposite of the cost: higher cost means lower fitness. Use F to denote the fitness function, for example, $F(s) = \frac{1}{F(s)}$ is a valid fitness function.

 A pair of states are selected according to the reproduction probabilities (using CDF inversion).

Cross Over

Definition

- The states need to be encoded by strings.
- Cross over means swapping substrings.
- For example, the children of 10101 and 01010 could be the same as the parents or one of the following variations.

```
(11010, 00101), (10010, 01101)
(10110, 01001), (10100, 01011)
```

Mutation

Definition

- The states need to be encoded by strings.
- Mutation means randomly updating substrings. Each character is changed with small probability q, called the mutation rate.
- For example, the mutated state from 000 could stay the same or be one of the following.

one of 001, 010, 100, with probability $q(1-q)^2$ one of 011, 101, 110, with probability $q^2(1-q)$ and 111, with probability q^3

Cross Over, Modifications Definition

- The previous cross over method is called 1 point cross over.
- It is also possible to divide the string into N parts. The method is called N point cross over.
- It is also possible to choose each character from one of the parents randomly. The method is called uniform cross over.

Mutation, Modifications Definition

- For specific problems, there are ways other than flipping bits to mutate a state.
- Two-swap: ABCDE to EBCDA
- Two-interchange: ABCDE to EDCBA

Genetic Algorithm TSP Example

Genetic Algorithm, Part I

Algorithm

- Input: state space S represented by strings s and cost function f or fitness function F.
- Output: $s^* \in S$ that minimizes f(s).
- Randomly generate N solutions as the initial population.

$$s_1, s_2, ..., s_N$$

Compute the reproduction probability.

$$p_i = \frac{F(s_i)}{N}, i = 1, 2, ..., N$$

 $\sum_{j=1}^{N} F(s_j)$

Genetic Algorithm, Part II

Algorithm

• Randomly pick two states according to p_i , say s_a , s_b . Randomly select a cross over point c, swap the strings.

$$s'_{a} = s_{a} [0...c) s_{b} [c...m]$$

 $s'_{b} = s_{b} [0...c) s_{a} [c...m]$

 Randomly mutate each position of each state s_i with a small probability (mutation rate).

$$s_i'[k] = \begin{cases} s_i[k] & \text{with probability } 1-q \\ \text{random} & \text{with probability } q \end{cases}, k = 1, 2, ..., m$$

Repeat with population s'.

Variations

- Parents can survive.
- Use ranking instead of F (s) to compute reproduction probabilities.
- Cross over random bits instead of chunks.

Genetic Algorithm Performance

- Use hill-climbing first.
- State design is the most important.
- In theory, cross over is much more efficient than mutation.